A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Revealing mechanisms of salinity tissue tolerance in succulent halophytes: A case study for Carpobrotus rossi. | LitMetric

Efforts to breed salt tolerant crops could benefit from investigating previously unexplored traits. One of them is a tissue succulency. In this work, we have undertaken an electrophysiological and biochemical comparison of properties of mesophyll and storage parenchyma leaf tissues of a succulent halophyte species Carpobrotus rosii ("pigface"). We show that storage parenchyma cells of C. rossii act as Na sink and possessed both higher Na sequestration (298 vs. 215 mM NaCl in mesophyll) and better K retention ability. The latter traits was determined by the higher rate of H -ATPase operation and higher nonenzymatic antioxidant activity in this tissue. Na uptake in both tissues was insensitive to either Gd or elevated Ca ruling out involvement of nonselective cation channels as a major path for Na entry. Patch-clamp experiments have revealed that Caprobrotus plants were capable to downregulate activity of fast vacuolar channels when exposed to saline environment; this ability was higher in the storage parenchyma cells compared with mesophyll. Also, storage parenchyma cells have constitutively lower number of open slow vacuolar channels, whereas in mesophyll, this suppression was inducible by salt. Taken together, these results provide a mechanistic basis for efficient Na sequestration in the succulent leaf tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.13391DOI Listing

Publication Analysis

Top Keywords

storage parenchyma
16
parenchyma cells
12
mesophyll storage
8
leaf tissues
8
vacuolar channels
8
revealing mechanisms
4
mechanisms salinity
4
salinity tissue
4
tissue tolerance
4
tolerance succulent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!