Although conventional methods such as MNase-seq, DNase-seq, and ChIP-seq have been used effectively to assess chromatin and locus accessibility at the genome level, these techniques generally require large numbers of input cells. As such, much of what we understand in terms of epigenetic regulation and locus accessibility in CD4+ T cell subsets comes from in vitro culture systems, which allow for the production of large numbers of polarized T cells. However, obtaining such numbers directly ex vivo from tissues of individual mice is difficult. Here we describe a method combining cytokine reporter mice and Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to identify genome wide locus accessibility in a small number of cytokine-expressing CD4+ T cells. This method takes you from cell isolation to library generation and quality control to query. Because the Il4 and Ifng loci are reciprocally regulated in polarized CD4+ T cell subsets (Th1 vs. Th2), we investigated the ability of this approach to identify transposase integration in both IL-4- and IFN-γ-expressing CD4+ T cells isolated directly from the lung and lymph nodes after helminth infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7896-0_23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!