Clinical experience with the use of ferric citrate as a phosphate binder in pediatric dialysis patients.

Pediatr Nephrol

Department of Pediatrics, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA.

Published: November 2018

Background: Ferric citrate, an iron-based phosphate binder, has been shown to improve both hyperphosphatemia and iron deficiency in adult chronic kidney disease patients, but its use in the pediatric dialysis population has not been described.

Methods: This is a retrospective analysis of 11 unselected pediatric dialysis patients who received ferric citrate as a phosphate binder between 2015 and 2017. Time-averaged laboratory values were compared pre- and post-ferric citrate initiation using the Wilcoxon signed-rank test.

Results: The median age of this cohort was 13 years old (range 4-17 years old). Five patients were on hemodialysis, and six patients were on peritoneal dialysis. The median duration of ferric citrate therapy was 214 days (range 39-654 days), with a median time-averaged ferric citrate dose of 3.5 tablets per day (range 1.5-8.4 tablets per day). Compared to the pre-ferric citrate period, ferric citrate treatment was associated with decreased serum phosphate (6.5 to 5.2 mg/dl, p = 0.014), decreased phosphate age-related standard deviation score (SDS) (2.3 to 0.9, p = 0.019), increased transferrin saturation (26 to 34%, p = 0.049), increased ferritin (107 to 230 ng/ml, p = 0.074), and maintenance of hematocrit.

Conclusions: In pediatric dialysis patients, ferric citrate may be able to concurrently lower phosphate levels and treat iron deficiency. However, larger studies are needed to further evaluate safety and efficacy in the pediatric chronic kidney disease population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146015PMC
http://dx.doi.org/10.1007/s00467-018-3999-yDOI Listing

Publication Analysis

Top Keywords

ferric citrate
28
pediatric dialysis
16
phosphate binder
12
dialysis patients
12
citrate
9
citrate phosphate
8
iron deficiency
8
chronic kidney
8
kidney disease
8
tablets day
8

Similar Publications

Menopause is a natural biological aging process characterized by the loss of ovarian follicular function and decrease estrogen levels. These hormonal fluctuations are associated with increased iron levels, which ultimately lead to iron accumulation. This study aims to investigate the effects of Deferasirox on iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation.

View Article and Find Full Text PDF

Alkane degradation coupled to Fe(III) reduction mediated by Gram-positive bacteria.

J Hazard Mater

December 2024

State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:

Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria.

View Article and Find Full Text PDF

We investigated the cost-effectiveness of treating iron deficiency anemia (IDA) with ferric citrate hydrate (FC) in Japan. We employed four treatment strategies: switching from sodium ferrous citrate (SF) to FC at (1) 500 mg (approximately 120 mg of iron) per day or (2) 1000 mg (approximately 240 mg of iron) per day in patients with SF-induced nausea/vomiting, or starting treatment with FC at (3) 500 mg/day or (4) 1000 mg/day. We evaluated the cost-effectiveness of these strategies compared with SF 100 mg (100 mg of iron) per day.

View Article and Find Full Text PDF

Cefiderocol (FDC), a siderophore-cephalosporin conjugate, is the newest option for treating infection with carbapenem-resistant gram-negative bacteria. We identified a novel mechanism contributing to decreased FDC susceptibility in Klebsiella pneumoniae clinical isolates. The mechanism involves 2 coresident plasmids: pKpQIL, carrying variants of bla carbapenemase gene, and pKPN, carrying the ferric citrate transport (FEC) system.

View Article and Find Full Text PDF

Salinomycin and its derivatives display promising anti-proliferating activity against bloodstream forms of . The mechanism of trypanocidal action of these compounds is due to their ionophoretic activity inducing an influx of sodium cations followed by osmotic water uptake, leading to massive swelling of bloodstream-form trypanosomes. Generally, higher trypanocidal activities of salinomycin derivatives are associated with higher cell swelling activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!