Epidemiologic studies associate perinatal intake of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) with reduced adiposity in children, suggesting that these fatty acids may alter adipose tissue development. The objective of this study was to determine whether enriching the perinatal diet in EPA and DHA reduces fat deposition in young chicks. Cobb 500 broiler chicks were fed isocaloric diets containing fat (8% wt:wt) from fish oil (FO), lard, canola oil, or flaxseed oil from 7 to 30 d of age. Adiposity (abdominal fat pad weight/body weight) at 30 d was not significantly affected by diet, but FO significantly reduced adipocyte size, increasing the abundance of small adipocytes. Plasma nonesterified fatty acid concentrations suggest that reduced adipocyte size was due, in part, to enhanced mobilization of fatty acids from adipose tissue. Our work indicates that dietary EPA and DHA effectively reduce the size of developing adipocytes in juveniles, which may limit adipose deposition and provide metabolic benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998788 | PMC |
http://dx.doi.org/10.3945/cdn.117.001644 | DOI Listing |
Zool Res
January 2025
Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.
Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
Introduction: Mycophenolate mofetil (MMF) is an immunosuppressive drug administered in the management of both autoimmune diseases and organ transplantation. The main aims of the study were: (a) to obtain information regarding the safety of using MMF in respect of its effect on normal T and B cells in lymphoid tissues; (b) to investigate whether the generation of inducible Foxp3-expressing regulatory T cells (Treg) might constitute additional mechanisms underlying the immunosuppressive properties of MMF.
Methods: The effect of MMF ( studies) and its active metabolite, mycophenolic acid, ( studies) on murine CD4 and CD8 T cells as well as B cells was determined, regarding: (a) absolute count, proliferation and apoptosis of these cells ( studies); (b) absolute count of these cells in the head and neck lymph nodes, mesenteric lymph nodes and the spleen ( studies).
Background: Short-chain fatty acids (SCFAs), derived from the fermentation of dietary fiber by intestinal commensal bacteria, have demonstrated protective effects against acute lung injury (ALI) in animal models. However, the findings have shown variability across different studies. It is necessary to conduct a comprehensive evaluation of the efficacy of these treatments and their consistency.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!