A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane. | LitMetric

Some plants affect the development of neighbouring plants by releasing secondary metabolites into their environment. This phenomenon is known as allelopathy and is a potential tool for weed management within the framework of sustainable agriculture. While many studies have investigated the mode of action of various allelochemicals (molecules emitted by allelopathic plants), little attention has been paid to their initial contact with the plant plasma membrane (PPM). In this paper, this key step is explored for two alkaloids, gramine and hordenine, that are allelochemicals from barley. Using in vitro bioassays, we first showed that gramine has a greater toxicity than hordenine towards a weed commonly found in northern countries (Matricaria recutita L.). Then, isothermal titration calorimetry was used to show that these alkaloids spontaneously interact with lipid bilayers that mimic the PPM. The greater impact of gramine on the thermotropic behaviour of lipids compared to hordenine was established by means of infrared spectroscopy. Finally, the molecular mechanisms of these interactions were explored with molecular dynamics simulations. The good correlation between phytotoxicity and the ability to disturb lipid bilayers is discussed. In this study, biophysical tools were used for the first time to investigate the interactions of allelochemicals with artificial PPM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023908PMC
http://dx.doi.org/10.1038/s41598-018-28040-6DOI Listing

Publication Analysis

Top Keywords

lipid bilayers
12
gramine hordenine
8
plant plasma
8
plasma membrane
8
interaction barley
4
barley allelochemical
4
allelochemical compounds
4
gramine
4
compounds gramine
4
hordenine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!