AI Article Synopsis

Article Abstract

The mechanisms of action of extracellular mitogens for normal human bronchial epithelial cells (NHBE) were investigated by observing their effects on selected biochemical pathways when the cells were incubated in serum-free media. We find that (a) epidermal growth factor (EGF) stimulates ornithine decarboxylase (ODC) activity and the rate of cell division without stimulating cAMP; (b) alone, pituitary extract (PEX) does not stimulate ODC activity, cAMP levels, or cell division; (c) when PEX is added to medium containing EGF there is a further increase in both ODC activity and the rate of cell division, again with no increase in cAMP levels; (d) in contrast, alone, L-epinephrine (EPI) stimulates an increase in both ODC and cAMP but does not stimulate cell division; (e) when EPI is added to medium containing both EGF and PEX a further increase in the rate of cell division is noted; (f) the specific inhibitor of ODC, alpha-(difluoromethyl)-ornithine (DMFO), also inhibits NHBE cell proliferation; and (g) the beta-adrenergic receptor antagonist propranolol inhibits the mitogenic action and ODC induction by EPI observed under condition e. We conclude that an increase in ODC activity is necessary but not sufficient for an increase in proliferation of NHBE cells. In contrast, cAMP stimulation is not necessary for an increase in NHBE cell division. However, in the presence of undefined factors in PEX, increases in cAMP levels result in a synergistic increase in the rate of EGF-stimulated clonal growth. By correlating the biochemical pathways invoked by EGF, PEX, EPI, and combinations thereof with their mitogenic actions, we have better defined the role each of these different mitogens plays in stimulating epithelial cell division.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.1041240206DOI Listing

Publication Analysis

Top Keywords

cell division
28
odc activity
16
rate cell
12
camp levels
12
increase odc
12
ornithine decarboxylase
8
activity camp
8
normal human
8
human bronchial
8
bronchial epithelial
8

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) levels can help predict outcomes in diffuse large B-cell lymphoma (DLBCL), but its integration with DLBCL molecular clusters remains unexplored. Using the LymphGen tool in 77 DLBCL with both ctDNA and tissue biopsy, a 95.8% concordance rate in molecular cluster assignment was observed, showing the reproducibility of molecular clustering on ctDNA.

View Article and Find Full Text PDF

Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!