Unlabelled: Physical exercise has been reported to increase neurotrophin in brain tissues as hippocampus as well as increased neurotrophic level peripherally in blood plasma and might have an effect on/or affect molecular processes of energy metabolism (and homeostasis). In this study, using quantitative proteomic analysis, we obtained a plasma protein profile from the rat with long-term moderate exercise. A total of 752 proteins were identified in the plasma. Among them, 54 proteins were significant up-regulated and 47 proteins were down-regulated in the plasma of exercise group compared with the control group. Bioinformatic analyses showed that these altered proteins are widely involved in multiple biological processes, molecular functions and cellular components, which connect with 11 signaling pathways. Interestingly, 5 up-regulated proteins Rap1b, PTPN11, ARHGDIA, Cdc42 and YWHAE, confirmed by Western blots, are involved in the neurotrophin signaling pathway which shows the lowest P value among the identified pathways. Further analyses showed that the 5 neurotrophin-signaling-pathway-related proteins participate in two important protein-protein interaction networks associated to cell survival and apoptosis, axonal development, synapse formation and plasticity. This study provides an exercise-induced plasma protein profile, suggesting that long-term exercise enhances the proteins involved in neurotrophin signaling pathway which may contribute to health benefit.
Significance: Physical activity contributes to myriad benefits on body health across the lifespan. The changes in plasma proteins after chronic moderate exercise may be used as biomarkers for health and may also play important roles in increase of cardiovascular fitness, enhancement of immune competence, prevention of obesity, decrease of risk for neurological disorders, cancer, stroke, diabetes and other metabolic disorders. Using a TMT-based proteomic method, this study identified 101 altered proteins in the plasma of rats after long-term moderate treadmill running, which may provide novel biomarkers for further investigation of the underlying mechanism of physical exercise. We confirmed that exercise enhances 5 proteins of the neurotrophin signaling pathway that may contribute to health benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2018.06.017 | DOI Listing |
Sci Rep
January 2025
Centre of New Technologies, University of Warsaw, Warsaw, Poland.
Regulation of the Hedgehog pathway activity may be supported by coactivators and corepresors of its main effectors- Gli transcription factors. While activation processes are well studied, repression mechanisms remain elusive. We identified chromatin remodelling complex Hira to interact with Gli3R protein, showed that its loss-of-function changes Hh pathway activity, and examined possible mechanism behind the observed effect.
View Article and Find Full Text PDFNat Commun
January 2025
Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The lengthy period of external fixation for bone consolidation increases the risk of complications during distraction osteogenesis (DO). Both pro-angiogenic and osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during DO. The underlying mechanism of Schwann cells (SCs) in promoting bone regeneration during DO remains poorly understood.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China.
Doxorubicin (DOX) is a widely used antitumor drug; however, its use is limited by the risk of serious cardiotoxicity. Dehydroevodiamine (DHE) is a quinazoline alkaloid which has antiarrhythmic effects. The aim of this study was to investigate the protective effect of DHE on doxorubicin-induced cardiotoxicity (DIC) and its potential mechanism.
View Article and Find Full Text PDFChemosphere
December 2024
Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
The review aims to examine the neurotoxic effects of arsenic, particularly exploring the roles of glial cells-astrocytes, microglia, and oligodendrocytes, amid its widespread environmental contamination and impact on cognitive impairments. It highlights the role of altered neurotrophin and growth factor signaling in disrupting neuronal health and cognitive performance. It elucidates the intricate interactions between oxidative stress, DNA damage, neurotransmitter disruption, and cellular signaling alterations, underscoring the vital importance of the glial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!