Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous studies have demonstrated that the recombinant Schistosoma japonicum protein P40 (rSjP40) could inhibit activation of hepatic stellate cells (HSCs) through the TGF-β1/Smads signaling pathway. Since multiple microRNAs could play essential roles in HSC activation and in the process of hepatic fibrosis through targeting Smads, we attempted to seek the potential microRNAs that could be involved in rSjP40-induced inhibition of HSC activation. Using the method of quantitative real-time PCR, we found that rSjP40 could induce miR-146a expression in LX-2 cells. The down-regulated expression levels of Smad4 and α-SMA in LX-2 cells induced by rSjP40 were partially restored by an miR-146a inhibitor. miR-146a can be involved in rSjP40-induced inhibition of HSC activation through targeting Smad4. These findings provide us a new idea to explore the potential mechanisms by which rSjP40 could regulate the process of hepatic fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.27193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!