Peptides that exhibit enzymatic or hormonal activities are regulatory factors and desirable therapeutic drugs because of their high target specificity and minimal side effects. Unfortunately, these drugs are susceptible to enzymatic degradation, leading to their rapid elimination and thereby demanding frequent dosage. Structurally modified forms of some peptide drugs have shown enhanced pharmacokinetics, improving their oral bioavailability. Here, we discuss a novel glycomimetic approach to modify lysine residues in peptides. In a model system, the ε-amine of Ts-Lys-OMe was reductively alkylated with a glucose derivative to afford a dihydroxylated piperidine in place of the amine. A similar modification was applied to H-KPV-NH2, a tripeptide derived from the α-melanocyte stimulating hormone (α-MSH) reported to have antimicrobial and anti-inflammatory properties. Antimicrobial assays, under a variety of conditions, showed no activity for Ac-KPV-NH2 or the α- or ε-glycoalkylated analogs. Glycoalkylated peptides did, however, show stability toward proteolytic enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023233PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199686PLOS

Publication Analysis

Top Keywords

structural modification
4
modification tripeptide
4
tripeptide kpv
4
kpv reductive
4
reductive "glycoalkylation"
4
"glycoalkylation" lysine
4
lysine residue
4
residue peptides
4
peptides exhibit
4
exhibit enzymatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!