Supramolecular-Surface Photochemistry: Assembly and Photochemistry of Host-Guest Capsules on Silica Surface.

Org Lett

Department of Chemistry , University of Miami, Coral Gables , Miami, Florida 33146 , United States.

Published: July 2018

AI Article Synopsis

  • Silica particles hosting cavitands and organic guest molecules mix and migrate when shaken with water, creating unique capsular complexes.
  • These complexes do not form in either water alone or organic solvents, highlighting the significance of cavitand movement on the silica surface.
  • The guests enclosed in these complexes displayed selective photochemical reactions similar to those observed in traditional organic capsules in solution.

Article Abstract

Host cavitands and organic guest molecules independently adsorbed on silica particles when mixed and shaken in the presence of a few drops of water underwent intra- and interparticle migration to form capsular complexes that were not formed either in water or organic solvents. Importance of cavitand migration and tumbling on silica surface was established by demonstrating that covalently linked cavitands do not form capsular complexes. The encapsulated guests exhibited selective photochemistry as they do within an organic capsule in solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.8b01497DOI Listing

Publication Analysis

Top Keywords

silica surface
8
form capsular
8
capsular complexes
8
supramolecular-surface photochemistry
4
photochemistry assembly
4
assembly photochemistry
4
photochemistry host-guest
4
host-guest capsules
4
capsules silica
4
surface host
4

Similar Publications

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

Surface-Sensitive Waveguide Imaging for In Situ Analysis of Membrane Protein Binding Kinetics.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.

View Article and Find Full Text PDF

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!