Clinical observations of patients with chronic diseases are often restricted in terms of duration. Therefore, obtaining a quantitative and comprehensive understanding of the chronology of chronic diseases is challenging, because of the inability to precisely estimate the patient's disease stage at the time point of observation. We developed a novel method to reconstitute long-term disease progression from temporally fragmented data by extending the nonlinear mixed-effects model to incorporate the estimation of "disease time" of each subject. Application of this method to sporadic Alzheimer's disease successfully depicted disease progression over 20 years. The covariate analysis revealed earlier onset of amyloid-β accumulation in male and female apolipoprotein E ε4 homozygotes, whereas disease progression was remarkably slower in female ε3 homozygotes compared with female ε4 carriers and males. Simulation of a clinical trial suggests patient recruitment using the information of precise disease time of each patient will decrease the sample size required for clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617977PMC
http://dx.doi.org/10.1002/cpt.1166DOI Listing

Publication Analysis

Top Keywords

disease progression
16
novel method
8
chronic diseases
8
disease
7
method estimate
4
estimate long-term
4
long-term chronological
4
chronological changes
4
changes fragmented
4
fragmented observations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!