Maternal health and nutritional status influence offspring health and the diseases that may develop in them. The effects of maternal inflammation on offspring from the perspective of the inflammatory response and immune changes are not fully understood. We hypothesized that maternal inflammation modulates immune and metabolic functions, affecting the pathophysiology of inflammatory diseases in offspring. This study investigated whether maternal inflammation affects the onset of collagen-induced arthritis (CIA), a murine model of human rheumatoid arthritis. Female DBA/1J mice received a single intraperitoneal injection of lipopolysaccharide (LPS) 5 days before conception. Male offspring of LPS-treated dams were placed in the maternal LPS group (MLG). To induce CIA, type II collagen (CII) was emulsified with Freund's complete adjuvant and injected twice into each mouse, at 13 and 16 weeks. The offspring were sacrificed at 26 weeks to analyze immunological and metabolic parameters. The degree of joint swelling at an early stage of CIA was lower in the MLG than in the control group. From histological analysis, the severity of joint destruction (severity of arthritis score) and CII-specific IgG titer were significantly lower in the MLG. However, at 26 weeks, serum interleukin (IL)-6 levels, an index of CIA disease activity, were significantly higher in the MLG. Moreover, serum leptin levels were lower in the MLG, and a negative correlation between leptin and serum IL-6 was observed. In conclusion, maternal inflammation does not merely suppress inflammation; it may delay CIA in offspring. The analysis of inflammatory cytokines and leptin concentrations at 26 weeks suggests that the pathophysiology of arthritis was worsening. This study also suggests that maternal inflammation modulates postnatal inflammatory response patterns in offspring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10753-018-0827-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!