Due to the curvature of the bone marrow cavity, the intramedullary nail used in long bone fracture fixation can be deformed, causing displacement of the locking holes. In this study, an algorithm using only one C-arm image to determine the center positions and axial directions of locking holes was developed for drilling guidance. Based on conventional method that the axial direction of locking hole would be identified when locking hole contour is presented as a circle, the proposed method can locate the circle contour centroid by using one C-arm image including two elliptical contours. Then the two distal locking holes' axial direction and centers would be determined. Three experiments were conducted to verify the performance of the proposed algorithm, which are (1) computer simulation, (2) use of real intramedullary nails, and (3) actual drilling test with the bone model. The experimental results showed that the average error of the axial direction and center position were 0.62 ± 0.6°, 0.73 ± 0.53 mm (simulation) and 3.16 ± 1.36°, 1.10 ± 0.50 mm (actual nail), respectively. The last ten drilling test sets were completed successfully (with an average duration of 48 seconds). Based on the experimental results, the proposed algorithm was feasible for clinic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989302PMC
http://dx.doi.org/10.1155/2018/4530386DOI Listing

Publication Analysis

Top Keywords

axial direction
12
distal locking
8
intramedullary nails
8
locking holes
8
c-arm image
8
locking hole
8
proposed algorithm
8
drilling test
8
locking
6
c-arm image-based
4

Similar Publications

Introduction: With the increased use of CTs in cases with trimalleolar ankle fractures, bone fragments between the posterior malleolus and the rest of the articular surface tibial plafond surface - described as intercalary fragments (ICFs) - can be recognized. The aim of this study was to determine the ICF size threshold for a significant change in the pressure distribution at the ankle joint, having a considerable impact on the remaining cartilage of the joint.

Design And Methods: Eight human cadaveric lower legs were used, and a posterior malleolus Bartonicek II fracture was created with sequential 2mm, 4mm, 6mm and 8mm ICFs.

View Article and Find Full Text PDF

Objective: Timing calibration is essential for positron emission tomography (PET) system as it enhances timing resolution to improve image quality. Traditionally, positron sources are employed for timing calibration. However, the photons emitted by these sources travel in opposite directions, necessitating that positrons annihilate at multiple locations to collect coincidence data across a greater number of lines of response (LORs).

View Article and Find Full Text PDF

In various applications, the pore structure of a porous medium must be controlled to facilitate heat and mass transfer, which considerably influence the system performance. Freeze-casting is a versatile technique for creating aligned pores; However, because of the complexity of the associated equipment and the energy inefficiency of liquid-nitrogen-based cooling in a room-temperature environment, limits scalability for industrial applications. This study is aimed at establishing a novel freeze-casting strategy with a simple mold design combining heat-conductive and insulating materials for long-range pore alignment via directional ice growth under deep-freezing conditions, rendering it feasible for large-scale production.

View Article and Find Full Text PDF

Introduction: Numerous orthopaedic procedures including dynamic hip screw plating and various osteotomies require placement of a reference guide pin or K wire to direct bone cuts or for drilling screw holes. Appropriate positioning of these wires is a critical component of surgery. Irrespective of whether one is a seasoned surgeon or an apprentice, these wires often need repositioning and readjustment.

View Article and Find Full Text PDF

Porous nanomaterials have shown great promise in many desalination applications. Zeolite nanotubes, featuring abundant but inhomogeneous nanopores on their surface, have been recently synthesized in experiments; however, their capacity for desalination is not yet understood. In this work, we use molecular dynamics simulations to investigate the capability of assembled zeolite nanotube membranes to perform in desalination applications due to their inherent multiscale porous properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!