Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are highly similar neuropeptides present in several tissues, endowed with immunoregulatory functions and other systemic effects. We previously reported that both neuropeptides reduce viral production in HIV-1-infected primary macrophages, with the participation of β-chemokines and IL-10, and now we describe molecular mechanisms engaged in this activity. Macrophages exposed to VIP or PACAP before HIV-1 infection showed resistance to viral replication, comparable to that observed when the cells were treated after infection. Also, multiple treatments with a suboptimal dose of VIP or PACAP after macrophage infection resulted in a decline of virus production similar to the inhibition promoted by a single exposure to the optimal inhibitory concentration. Cellular signaling pathways involving cAMP production and activation of protein kinases A and C were critical components of the VIP and PACAP anti-HIV-1 effects. Analysis of the transcription factors and the transcriptional/cell cycle regulators showed that VIP and PACAP induced cAMP response element-binding protein activation, inhibited NF-kB, and reduced Cyclin D1 levels in HIV-1-infected cells. Remarkably, VIP and PACAP promoted G-to-A mutations in the HIV-1 provirus, matching those derived from the activity of the APOBEC family of viral restriction factors, and reduced viral infectivity. In conclusion, our findings strengthen the antiretroviral potential of VIP and PACAP and point to new therapeutic approaches to control the progression of HIV-1 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008521PMC
http://dx.doi.org/10.3389/fimmu.2018.01336DOI Listing

Publication Analysis

Top Keywords

vip pacap
24
hiv-1 infection
12
vasoactive intestinal
8
intestinal peptide
8
pituitary adenylate
8
adenylate cyclase-activating
8
cyclase-activating polypeptide
8
activation protein
8
protein kinases
8
vip
7

Similar Publications

The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge.

View Article and Find Full Text PDF

Estrogens impair hypophagia and hypothalamic cell activation induced by vasoactive intestinal peptide, but not by pituitary adenylate cyclase-activating polypeptide.

Peptides

January 2025

Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil; Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil. Electronic address:

Article Synopsis
  • The study investigated how estradiol affects food intake and receptor expression in postmenopausal rats, particularly looking at the neuropeptides VIP and PACAP in specific hypothalamic areas.
  • Results showed that estradiol reduced the expression of the VPAC2 receptor and disrupted the hypophagic (appetite-reducing) effects of VIP, while PACAP continued to suppress food intake.
  • Additionally, estradiol altered plasma glucose and free fatty acid levels in these rats, suggesting different mechanisms in how VIP and PACAP influence energy homeostasis in the context of estrogen loss.
View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the relationship between post-traumatic stress disorder (PTSD) and migraines, focusing on its prevalence in patients with episodic migraines (EM) and chronic migraines (CM).
  • The research involved 116 patients, finding that PTSD was more common in those with chronic migraines, and it significantly affected their quality of life and comorbidities like anxiety and depression.
  • The findings highlight the need for further studies to explore the impact of PTSD on migraines, particularly in cases linked to traumatic life events such as sexual violence.
View Article and Find Full Text PDF
Article Synopsis
  • BDNF plays an important role in brain function and may help with pain and depression; this study tested its effectiveness against migraines using an animal model.
  • Researchers administered two doses of recombinant human BDNF (rhBDNF) to rats with pain induced by NTG injections, measuring pain response and changes in brain-related neuropeptides and cytokine levels.
  • Results showed that rhBDNF significantly reduced migraine-related pain and altered gene expression similarly to the migraine medication sumatriptan, indicating its potential as a non-invasive migraine treatment.
View Article and Find Full Text PDF

Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!