iTRAQ-Based Proteomic Analysis reveals possible target-related proteins and signal networks in human osteoblasts overexpressing FGFR2.

Proteome Sci

Department of Plastic and Reconstructive Surgery, Huashan Hospital, Fudan University School of Medicine, No. 12, Wu Lu Mu Qi Road (M), Shanghai, 200040 China.

Published: June 2018

Background: Fibroblast growth factor receptor 2 (FGFR2) play a vital role in skeletogenesis. However, the molecular mechanisms triggered by FGFR2 in osteoblasts are still not fully understood. In this study, proteomics and bioinformatics analysis were performed to investigate changes in the protein profiles regulated by FGFR2, with the goal of characterizing the molecular mechanisms of FGFR2 function in osteoblasts.

Methods: In this study, FGFR2-overexpression cell line was established using the lentivirus-packaging vector in human osteoblasts (hFOB1.19). Next, the isobaric tags for relative and absolute quantitation (iTRAQ) in combination with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to compare the proteomic changes between control and FGFR2-overexpression cells. Thresholds (fold-change of ≥ 1.5 and a -value of < 0.05) were selected to determine differentially expressed proteins (DEPs). The bioinformatics analysis including GO and pathway analysis were done to identify the key pathways underlying the molecular mechanism.

Results: A Total of 149 DEPs was identified. The DEPs mainly located within organelles and involved in protein binding and extracellular regulation of signal transduction. ColI, TNC, FN1 and CDKN1A were strikingly downregulated while UBE2E3, ADNP2 and HSP70 were significantly upregulated in FGFR2-overexpression cells. KEEG analysis suggested the key pathways included cell death, PI3K-Akt signaling, focal adhesion and cell cycle.

Conclusions: To our knowledge, this is the first protomic research to investigate alterations in protein levels and affected pathways in FGFR2-overexpression osteoblasts. Thus, this study not only provides a comprehensive dataset on overall protein changes regulated by FGFR2, but also shed light on its potential molecular mechanism in human osteoblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011184PMC
http://dx.doi.org/10.1186/s12953-018-0140-xDOI Listing

Publication Analysis

Top Keywords

human osteoblasts
8
molecular mechanisms
8
fgfr2
5
itraq-based proteomic
4
proteomic analysis
4
analysis reveals
4
reveals target-related
4
target-related proteins
4
proteins signal
4
signal networks
4

Similar Publications

MARCH5 ameliorates aortic valve calcification via RACGAP1-DRP1 pathway associated mitochondrial quality control.

Biochim Biophys Acta Mol Cell Res

January 2025

Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China. Electronic address:

Background: Mitochondrial E3 ubiquitin ligase (MARCH5) as an important regulator in maintaining mitochondrial function. Our aims were to investigate the role and mechanism of MARCH5 in aortic valve calcification.

Methods: Human aortic valves, both calcified and non-calcified, were analyzed for MARCH5 expression using western blot.

View Article and Find Full Text PDF

Trends in Research of Odontogenic Keratocyst and Ameloblastoma.

J Dent Res

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM.

View Article and Find Full Text PDF

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs.

Adv Mater

January 2025

Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.

Assembling natural proteins into large, strong, bone-mimetic scaffolds for repairing bone defects in large-animal load-bearing sites remain elusive. Here this challenge is tackled by assembling pure silk fibroin (SF) into 3D scaffolds with cortical-bone-like lamellae, superior strength, and biodegradability through freeze-casting. The unique lamellae promote the attachment, migration, and proliferation of tissue-regenerative cells (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!