Tumor-associated macrophages (TAMs) represent potential targets for anticancer treatments as these cells play critical roles in tumor progression and frequently antagonize the response to treatments. TAMs are usually associated to an M2-like phenotype, characterized by anti-inflammatory and protumoral properties. This phenotype contrasts with the M1-like macrophages, which exhibits proinflammatory, phagocytic, and antitumoral functions. As macrophages hold a high plasticity, strategies to orchestrate the reprogramming of M2-like TAMs towards a M1 antitumor phenotype offer potential therapeutic benefits. One of the most used anticancer treatments is the conventional X-ray radiotherapy (RT), but this therapy failed to reprogram TAMs towards an M1 phenotype. While protontherapy is more and more used in clinic to circumvent the side effects of conventional RT, the effects of proton irradiation on macrophages have not been investigated yet. Here we showed that M1 macrophages (THP-1 cell line) were more resistant to proton irradiation than unpolarized (M0) and M2 macrophages, which correlated with differential DNA damage detection. Moreover, proton irradiation-induced macrophage reprogramming from M2 to a mixed M1/M2 phenotype. This reprogramming required the nuclear translocation of NFκB p65 subunit as the inhibition of IκBα phosphorylation completely reverted the macrophage re-education. Altogether, the results suggest that proton irradiation promotes NFκB-mediated macrophage polarization towards M1 and opens new perspectives for macrophage targeting with charged particle therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021396 | PMC |
http://dx.doi.org/10.1038/s41419-018-0757-9 | DOI Listing |
J Neurooncol
January 2025
Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, China.
Background: Craniopharyngioma (CP), a benign tumor originating from remnants of Rathke's pouch in the sellar region, accounts for approximately 30% of all cases of craniopharyngioma. Radiation therapy has been used to treat CP patients for decades; however, there is still a lack of systematic reviews on the long-term tumor control outcomes in pediatric CP patients treated with external radiation therapy.
Methods: We conducted a comprehensive search of multiple databases for studies on the tumor progression rates of childhood-onset CP(COCP) patients who received external radiotherapy.
Phys Med Biol
January 2025
Department of Oncology Radiation, University of California San Francisco, 1600 Divisadero Street, Suite HM006, San Francisco, California, 94143, UNITED STATES.
To study the effect of dose-rate in the time evolution of chemical yields produced in pure water versus a cellular-like environment for FLASH radiotherapy research. A version of TOPAS-nBio with Tau-Leaping algorithm was used to simulate the homogenous chemistry stage of water radiolysis using three chemical models: 1) liquid water model that considered scavenging of eaq-, H● by dissolved oxygen; 2) Michaels & Hunt model that considered scavenging of ●OH, eaq-, and H● by biomolecules existing in cellular environment; 3) Wardman model that considered model 2) and the chemical repair enzyme glutathione (GHS). H2O2 concentrations at conventional and FLASH dose-rates were compared with published measurements.
View Article and Find Full Text PDFAnticancer Res
January 2025
Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan, R.O.C.;
Background/aim: The CD155/TIGIT axis has recently emerged as a promising immunotherapeutic target in several malignancies. However, its prognostic relevance within the tumor microenvironment (TME) in patients with locally advanced rectal cancer (LARC) who have received neo-adjuvant chemoradiotherapy (neoCRT) remains unclarified.
Materials And Methods: The levels of tumor CD155 and TIGIT T cells in pair-matched pre-neoCRT biopsies and post-neoCRT surgical tissues were evaluated in 110 LARC tissues using immunohistochemistry.
Anticancer Res
January 2025
Proton Medical Research Center, University of Tsukuba, Ibaraki, Japan.
Background/aim: This study aimed to predict the optimal timing for adaptive radiation therapy (ART) using two-dimensional X-ray image-based water equivalent thickness (2DWET).
Patients And Methods: Forty patients with oropharyngeal and hypopharyngeal cancer underwent Computed Tomography (CT) rescanning during treatment. An adaptive score (AS) was proposed to guide ART decisions based on changes in four dose indices: target coverage, spinal cord dose, parotid gland dose, and over-dose volume.
Mol Cancer Ther
December 2024
National Center for Tumor Diseases, Heidelberg, Germany.
Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!