Exploring the intrinsic behaviour of multisite phosphorylation systems as part of signalling pathways.

J R Soc Interface

Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK

Published: June 2018

Multisite phosphorylation is a basic way of chemically encoding substrate function and a recurring feature of cell signalling pathways. A number of studies have explored information processing characteristics of multisite phosphorylation, through studies of the intrinsic kinetics. Many of these studies focus on the module in isolation. In this paper, we build a bridge to connect the behaviour of multisite modification in isolation to that as part of pathways. We study the effect of activation of the enzymes (which are basic ways in which the module may be regulated), as well the effects of the modified substrates being involved in further modifications or exiting reaction compartments. We find that these effects can induce multiple kinds of transitions, including to behaviour not seen intrinsically in the multisite modification module. We then build on these insights to investigate how these multisite modification systems can be tuned by enzyme activation to realize a range of information processing outcomes for the design of synthetic phosphorylation circuits. Connecting the complexity of multisite modification kinetics, with the pathways in which they are embedded, serves as a basis for teasing out many aspects of their interaction, providing insights of relevance in systems biology, synthetic biology/chemistry and chemical information processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030633PMC
http://dx.doi.org/10.1098/rsif.2018.0109DOI Listing

Publication Analysis

Top Keywords

multisite modification
16
multisite phosphorylation
12
behaviour multisite
8
signalling pathways
8
multisite
7
exploring intrinsic
4
intrinsic behaviour
4
phosphorylation
4
phosphorylation systems
4
systems signalling
4

Similar Publications

Using CO as the C1 source for N-formylation of amine is a crucial energy-storage pathway to address the greenhouse effect while generating high-value-added chemicals but is limited by the activation of inert molecules. Herein, a dual active site catalyst with high CO activation and dihydrogen dissociation capacity was fabricated by incorporating a Schiff base and Au nanoparticles (NPs) on silicon dioxide (SiO). The modification of the Schiff base not only provides an alkaline environment for CO absorption but also stabilizes Au NPs in a small and highly dispersed state, which regulates the electronic density of the metal for excellent H cleavage.

View Article and Find Full Text PDF

Multiple Topology Replica Exchange of Expanded Ensembles for Multidimensional Alchemical Calculations.

J Chem Theory Comput

January 2025

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States.

Relative free energy (RFE) calculations are now widely used in academia and the industry, but their accuracy is often limited by poor sampling of the complexes' conformational ensemble. To help address conformational sampling problems when simulating many relative binding free energies, we developed a novel method termed multiple topology replica exchange of expanded ensembles (MT-REXEE). This method enables parallel expanded ensemble calculations, facilitating iterative RFE computations while allowing conformational exchange between parallel transformations.

View Article and Find Full Text PDF
Article Synopsis
  • Effective evidence-based interventions (EBIs) are crucial for helping children with mental health issues, but many don't get used in real-world settings, leaving families without proper care.
  • A study called Supportive Parents-Coping Kids (SPARCK) will focus on both testing and implementing this parent training intervention across 24 municipalities in Norway, using a mixed methods approach to assess its effectiveness.
  • By understanding what helps or hinders successful implementation, the study aims to improve care delivery, bridging the gap between research findings and practical application in clinical scenarios.
View Article and Find Full Text PDF

Spinal cord injury (SCI) often results in severe motor and sensory deficits, leading to significant disability. Preclinical studies and retrospective studies suggest that a critical window of enhanced neuroplasticity may exist immediately after SCI, during which therapeutic interventions could yield greater functional improvements. The impact of time interval since SCI on efficacy of rehabilitation has not been directly assessed and is the focus of this clinical trial.

View Article and Find Full Text PDF

Proton Storage Chemistry in Aqueous Zinc-Inorganic Batteries with Moderate Electrolytes.

Adv Mater

December 2024

Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China.

The proton (H) has been proved to be another important energy storage ion besides Zn in aqueous zinc-inorganic batteries with moderate electrolytes. H storage usually possesses better thermodynamics and reaction kinetics than Zn, and is found to be an important addition for Zn storage. Thus, understanding, characterizing, and modulating H storage in inorganic cathode materials is particularly important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!