[Research Progress on the Role of Pyroptosis in the Pathogenesis of Myelodysplastic Syndrome -Review].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Department of Hematology, People's Hospital of Wuhan University, Wuhan 430060, Hubei Province, China. E-mail:

Published: June 2018

Pyroptosis is a novel type of programmed cell death, which is closely related with the pathogenesis of myelodysplastic syndromes (MDS). The recent studies showed that all of S100A9/TLR4, S100A9/CD33 and Nox/ROS signaling pathways can activate oxygen-sensitivity NLRP3 inflammasome and then induce the pyroptosis of hematopoeitic stem cells (HSC) / hematopeitic pregenitor cells (HPC), resulting in ineffective hematopoiesis in patients with MDS. Further studies on the role and molecular mechanism of pyroptosis in the pathogenesis of MDS will provide the potential opportunity for the diagnosis and treatment of MDS. Here, the recent advances in the role and mechnism of pyroptosis in the pathogenesis of MDS are reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.7534/j.issn.1009-2137.2018.03.052DOI Listing

Publication Analysis

Top Keywords

pyroptosis pathogenesis
12
pathogenesis myelodysplastic
8
mds studies
8
pathogenesis mds
8
pyroptosis
5
mds
5
[research progress
4
progress role
4
role pyroptosis
4
pathogenesis
4

Similar Publications

Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC.

View Article and Find Full Text PDF

Inflammasomes and idiopathic inflammatory myopathies.

Front Immunol

December 2024

Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.

Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM.

View Article and Find Full Text PDF

To investigate the role and mechanism of triptophenolide (TRI) in resisting rheumatoid arthritis (RA). Network pharmacology analysis results suggested that TRI was related to multiple inflammation-related signaling proteins, and possessed the stable structural configuration. In animal experiments, TRI suppressed RA in mice, inhibited tissue inflammation, and improved synovial injury.

View Article and Find Full Text PDF

Autophagy is a physiologically regulated cellular process orchestrated by autophagy-related genes (ATGs) that, depending on the tumor type and stage, can either promote or suppress tumor growth and progression. It can also modulate cancer stem cell maintenance and immune responses. Therefore, targeted manipulation of autophagy may inhibit tumor development by overcoming tumor-promoting mechanisms.

View Article and Find Full Text PDF

PKM2-mediated STAT3 phosphorylation promotes acute liver failure via regulating NLRP3-dependent pyroptosis.

Commun Biol

December 2024

Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.

Acute liver failure (ALF) is a life-threatening clinical syndrome characterized by high-grade inflammation and multi-organ failure. Our previous study shows that targeting the M2 isoform of pyruvate kinase (PKM2) to inhibit macrophage inflammation may be a promising strategy for ALF treatment. however, the mechanism by which PKM2 regulates the inflammatory response is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!