Proline accumulation is one of the most important adaptation mechanisms for plants to cope with environmental stresses, such as drought and freezing. However, the molecular mechanism of proline homeostasis under these stresses is largely unknown. Here, we identified a mitochondrial protein, DFR1, involved in the inhibition of proline degradation in Arabidopsis. DFR1 was strongly induced by drought and cold stresses. The dfr1 knockdown mutants showed hypersensitivity to drought and freezing stresses, whereas the DFR1 overexpression plants exhibited enhanced tolerance, which was positively correlated with proline levels. DFR1 interacts with proline degradation enzymes PDH1/2 and P5CDH and compromises their activities. Genetic analysis showed that DFR1 acts upstream of PDH1/2 and P5CDH to positively regulate proline accumulation. Our results demonstrate a regulatory mechanism by which, under drought and freezing stresses, DFR1 interacts with PDH1/2 and P5CDH to abrogate their activities to maintain proline homeostasis, thereby conferring drought and freezing tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2018.04.011DOI Listing

Publication Analysis

Top Keywords

drought freezing
20
proline degradation
12
stresses dfr1
12
pdh1/2 p5cdh
12
proline
8
inhibition proline
8
freezing tolerance
8
proline accumulation
8
proline homeostasis
8
freezing stresses
8

Similar Publications

Genome-Wide Identification of Xyloglucan Endotransglucosylase/Hydrolase Multigene Family in Chinese Jujube () and Their Expression Patterns Under Different Environmental Stresses.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.

The Xyloglucan endotransglucosylase/hydrolase (XTH) family, a group of cell wall-modifying enzymes, plays crucial roles in plant growth, development, and stress adaptation. The quality and yield of Chinese jujube () fruit are significantly impacted by environmental stresses, including excessive salinity, drought, freezing, and disease. However, there has been no report of the XTH encoding genes present in the Chinese jujube genome and their response transcription level under various stresses.

View Article and Find Full Text PDF

The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance.

View Article and Find Full Text PDF

AmChi7, an AmWRKY59 - Activated chitinase, was involved in the adaption to winter climate in Ammopiptanthusmongolicus.

Plant Physiol Biochem

December 2024

Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China. Electronic address:

Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus.

View Article and Find Full Text PDF

NtSAP9 confers freezing tolerance in Nicotiana tabacum plants.

Plant Physiol Biochem

November 2024

Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China. Electronic address:

Abiotic stresses, such as extreme temperatures, drought, and salinity, significantly affect plant growth and productivity. Among these, cold stress is particularly detrimental, impairing cellular processes and leading to reduced crop yields. In recent years, stress-associated proteins (SAPs) containing A20 and AN1 zinc-finger domains have emerged as crucial regulators in plant stress responses.

View Article and Find Full Text PDF

Increasing extreme climatic events threaten the functioning of terrestrial ecosystems. Because soil microbes govern key biogeochemical processes, understanding their response to climate extremes is crucial in predicting the consequences for ecosystem functioning. Here we subjected soils from 30 grasslands across Europe to four contrasting extreme climatic events under common controlled conditions (drought, flood, freezing and heat), and compared the response of soil microbial communities and their functioning with those of undisturbed soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!