Long-acting glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists (GLP-1RA), such as exendin-4 (Ex4), promote weight loss. On the basis of a newly discovered interaction between GLP-1 and oleoylethanolamide (OEA), we tested whether OEA enhances GLP-1RA-mediated anorectic signaling and weight loss. We analyzed the effect of GLP-1+OEA and Ex4+OEA on canonical GLP-1R signaling and other proteins/pathways that contribute to the hypophagic action of GLP-1RA (AMPK, Akt, mTOR, and glycolysis). We demonstrate that OEA enhances canonical GLP-1R signaling when combined with GLP-1 but not with Ex4. GLP-1 and Ex4 promote phosphorylation of mTOR pathway components, but OEA does not enhance this effect. OEA synergistically enhanced GLP-1- and Ex4-stimulated glycolysis but did not augment the hypophagic action of GLP-1 or Ex4 in lean or diet-induced obese (DIO) mice. However, the combination of Ex4+OEA promoted greater weight loss in DIO mice than Ex4 or OEA alone during a 7-day treatment. This was due in part to transient hypophagia and increased energy expenditure, phenotypes also observed in Ex4-treated DIO mice. Thus, OEA augments specific GLP-1RA-stimulated signaling but appears to work in parallel with Ex4 to promote weight loss in DIO mice. Elucidating cooperative mechanisms underlying Ex4+OEA-mediated weight loss could, therefore, be leveraged toward more effective obesity therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230892PMC
http://dx.doi.org/10.1152/ajpregu.00459.2017DOI Listing

Publication Analysis

Top Keywords

weight loss
24
dio mice
16
ex4 promote
12
glp-1 ex4
12
glucagon-like peptide-1
8
promote weight
8
oea enhances
8
canonical glp-1r
8
glp-1r signaling
8
hypophagic action
8

Similar Publications

The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.

View Article and Find Full Text PDF

Rationale: Obesity is an increasing medical issue not responding well to behavioural treatments beyond their initial weeks/months.

Aims And Objectives: Before suggesting surgical or pharmacological interventions, medical professionals might consider referrals to cost-effective, community-based behavioural treatments if stronger theoretical/empirical bases were demonstrated. Thus, evaluation of such is warranted.

View Article and Find Full Text PDF

Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.

View Article and Find Full Text PDF

Purpose: This study aims to investigate the possible impacts of fasting on physical activity and weight loss in adult users of glucagon-like peptide-1 (GLP-1) agonists, specifically semaglutide and tirzepatide, using qualitative methods to gain in-depth insights into participants' experiences and perceptions.

Patients And Methods: A qualitative study was conducted at the Polyclinic at King Faisal University, Al-Ahsa, Saudi Arabia, during and after Ramadan in 2024, along with the completion of International Physical Activity Questionnaires (IPAQs). The semi-structured interviews and the IPAQ were used to assess physical activity levels.

View Article and Find Full Text PDF

Cystic fibrosis-related diabetes (CFRD) is the most common non-pulmonary comorbidity in people with cystic fibrosis (CF). Current guidelines recommend insulin therapy as the treatment of choice for people with CFRD. In the past, obesity and overweight were uncommon in individuals with CF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!