Protein phosphatase 2A (PP2A) is a heterotrimer composed of single catalytic and scaffolding subunits and one of several possible regulatory subunits. We identified PPTR-2, a regulatory subunit of PP2A, as a binding partner for the giant muscle protein UNC-89 (obscurin) in Caenorhabditis elegans. PPTR-2 is required for sarcomere organization when its paralogue, PPTR-1, is deficient. PPTR-2 localizes to the sarcomere at dense bodies and M-lines, colocalizing with UNC-89 at M-lines. PP2A components in C. elegans include one catalytic subunit LET-92, one scaffolding subunit (PAA-1), and five regulatory subunits (SUR-6, PPTR-1, PPTR-2, RSA-1, and CASH-1). In adult muscle, loss of function in any of these subunits results in sarcomere disorganization. rsa-1 mutants show an interesting phenotype: one of the two myosin heavy chains, MHC A, localizes as closely spaced double lines rather than single lines. This "double line" phenotype is found in rare missense mutants of the head domain of MHC B myosin, such as unc-54(s74). Analysis of phosphoproteins in the unc-54(s74) mutant revealed two additional phosphoserines in the nonhelical tailpiece of MHC A. Antibodies localize PPTR-1, PAA-1, and SUR-6 to I-bands and RSA-1 to M-lines and I-bands. Therefore, PP2A localizes to sarcomeres and functions in the assembly or maintenance of sarcomeres.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232960 | PMC |
http://dx.doi.org/10.1091/mbc.E18-03-0192 | DOI Listing |
Alzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
L & J Bio, Co., Ltd, Seoul, Songpa-Gu, Korea, Republic of (South).
Background: Neurofibrillary tangles (NFTs), along with amyloid beta plaque, are neuropathological aggregates of Alzheimer's Disease (AD). Hyperphosphorylated tau is responsible for the NFTs formation and further neurodegeneration in AD. The hippocampal region and the entorhinal cortex (EC) have been a major focus of AD research because the deposits of hyperphosphorylated tau protein and NFT in these regions are correlated with memory deficits.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sanford burnham prebys medical discovery institute, San Diego, CA, USA.
Background: A pathological hallmark of Alzheimer's disease (AD) is the accumulation of amyloid-beta peptide (Aß). Potential treatments targeting Aß production such as γ-secretase inhibitors have had limited success. A promising alternative approach involves addressing early synaptic dysfunction by modulating molecules like striatal-enriched protein tyrosine phosphatase (STEP), whose levels and activity are upregulated by Aß.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, University of Fukui, Matsuoka, Fukui, Japan.
Background: One of the pathological hallmarks in Alzheimer's disease (AD) brain is neurofibrillary tangles (NFTs) composed of highly phosphorylated tau protein. Clinical benefit of traditional Japanese Kampo Yokukansan for dementia patients, including AD was suggested. In this study, we investigated whether yokukansan participates in the degradation of phosphorylated tau and toxic oligomeric species of tau by using cell culture model of tauopathy, M1C cells.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
Background: Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!