Structural modifications of molecular cobalt catalysts have provided important insights into the structure-function relationship for the hydrogen evolution reaction. We have shown that replacement of equatorial pyridines with more basic and conjugate isoquinoline groups of a pentadentate ligand results in lower overpotential and higher catalytic activity for electro- and photolytic H production in aqueous solutions. To fully understand the electronic and steric effects of the axial group that lies trans to the proposed cobalt hydride intermediate, isoquinoline groups were introduced in two new pentadentate ligands, N, N-bis(2-pyridinylmethyl)[3-(2-pyridinyl)isoquinoline)]-1-methanamine (DPA-1-MPI) and N, N-bis(2-pyridinylmethyl)[1-(2-pyridinyl)-isoquinoline)]-3-methanamine (DPA-3-MPI). Despite a slight structural difference of the introduced isoquinoline group, the resulting cobalt complexes display drastic changes in their electro- and photochemical properties. There are positive shifts of 290 and 260 mV, respectively, for the Co/Co and Co-H/Co-H couples from [Co(DPA-1-MPI)(HO)](PF) to [Co(DPA-3-MPI)(HO)](PF), with the former being ∼32 times as active as the latter in photocatalytic H production. Density functional theory (DFT) calculations show that the protonation of Co to yield the Co-H species is energetically more favorable for [Co(DPA-1-MPI)(HO)](PF) than that of [Co(DPA-3-MPI)(HO)](PF). Both experimental results and DFT computations suggest that the presence of a planar conjugate bipyridyl unit or its isoquinoline derivative is a key feature for stabilizing low valent Co species toward proton binding. The incorporation of an electron-donating group trans to the proposed Co-H species also facilitates proton binding and H-H bond formation, which is proposed to occur by the heterolytic coupling of Co-H species. The overall catalytic H evolution is presented as the modified electron transfer (E)-proton transfer (C)-electron transfer (E)-proton transfer (C) (mod-ECEC) pathway. This study provides important new insight into the electronic and steric factors controlling catalytic H production by Co complexes with pentadentate ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b05108 | DOI Listing |
J Chromatogr A
December 2024
Synthetic Molecule Pharmaceutical Science, gRED, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States. Electronic address:
Quantitative structure retention relation (QSRR) is an active field of research, primarily focused on predicting chromatography retention time (Rt) based on molecular structures of an input analyte on a single or limited number of reversed-phase HPLC (RP-HPLC) columns. However, in the pharmaceutical chemistry manufacturing and controls (CMC) settings, single-column QSRR models are often insufficient. It is important to translate retention time across different HPLC methods, specifically different stationary phases (SP) and mobile phases (MP), to guide the HPLC method development, and to bridge organic impurity profiles across different development phases and laboratories.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics, Northeastern University, Boston, MA, 02115, USA. Electronic address:
Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China. Electronic address:
Quillaja saponins (QS), a natural amphiphilic food additive, have significant potential in modulating the properties of starchy products. However, a systematic understanding of this phenomenon and the underlying molecular mechanisms remains lacking. In this study, two-stage molecular dynamics (MD) simulations combined with multiple experimental approaches were employed to investigate the modulation of starch properties by QS through six chain dynamic behaviors.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, People's Republic of China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, People's Republic of China. Electronic address:
Background: In current years, the CRISPR (clustered regularly interspaced short palindromic repeats) based strategies have emerged as the most promising molecular tool in the field of gene editing, intracellular imaging, transcriptional regulation and biosensing. However, the recent CRISPR-based diagnostic technologies still require the incorporation of other amplification strategies (such as polymerase chain reaction) to improve the cis/trans cleavage activity of Cas12a, which complicates the detection workflow and lack of a uniform compatible system to respond to the target in one pot.
Results: To better fully-functioning CRISPR/Cas12a, we reported a novel technique for straightforward nucleic acid detection by incorporating enzyme-responsive steric hindrance-based branched inhibitors with CRISPR/AsCas12a methodology.
J Hazard Mater
January 2025
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
The introduction of structural defects can improve the charge separation efficiency of metal-organic frameworks (MOFs)-based photocatalysts, which however come with suboptimal decontamination performance, due to steric hindrance and limited binding capacity of the involved modulators. In this work, hydroxyl group capturing the advantages of both worlds was utilized as new modulator to improve the photocatalytic performance of Fe-based defective MOFs. Benefited from its low steric effect and strong coordination bonding capability, hydroxyl-induced defects in Fe-MOF contributed to a nearly 8-fold increase of rate constant for the photocatalytic removal of hexavalent chromium (Cr(VI)) compared to that of pristine one, which also exceeded the defective one induced by acetic acid as modulator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!