Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While classification is important for assessing adolescent idiopathic scoliosis (AIS), it however suffers from low interobserver and intraobserver reliability. Classification using ensemble methods may contribute to improving reliability using the proper 2D and 3D images of spine curvature features. In this study, we present two new techniques to describe the spine, namely, leave-one-out and fan leave-one-out. Using these techniques, three descriptors are computed from a stereoradiographic 3D reconstruction to describe the relationship between a vertebra and its neighbors. A dynamic ensemble selection method is introduced for automatic spine classification. The performance of the method is evaluated on a dataset containing 962 3D spine models categorized according to three curve types. With a log loss of 0.5623, the dynamic ensemble selection outperforms voting and stacking ensemble learning techniques. This method can improve intraobserver and interobserver reliability, identify the best combination of descriptors for characterizing spine curve types, and provide assistance to clinicians in the form of information to classify borderline curvature types. Graphical abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-018-1853-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!