Increasing soft tissue thickness does not affect trabecular bone score reproducibility: a phantom study.

Endocrine

Unità Operativa di Radiologia Diagnostica ed Interventistica, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Published: August 2018

Purpose: Trabecular Bone Score (TBS) provides an indirect score of trabecular microarchitecture from lumbar spine (LS) dual energy X-ray absorptiometry. Increasing soft tissue thickness artifactually reduces TBS values; we evaluated the effect of a fictitious increase of soft tissue thickness on TBS and bone mineral density (BMD) reproducibility on a phantom model.

Methods: A Hologic spine phantom was scanned with a QDR-Discovery W Hologic densitometer. Fresh pork rind layers of 5 mm were used to simulate the in-vivo soft tissues. For each scan mode (fast array [FA], array, high definition [HD]), 25 scans were consecutively performed without phantom repositioning, at 0 (no layers), 1 cm, 3 cm, and 6 cm of thickness. BMD and TBS reproducibility was calculated as the complement to 100% of least significant change.

Results: Both BMD and TBS reproducibility slightly decreased with increasing soft tissue; this difference was statistically significant only for BMD using HD modality (reproducibility decreased from 99.4% at baseline to 98.4% at 6-cm of thickness). TBS reproducibility was slightly lower compared to that of BMD, and ranged between 98.8% (array, 0 cm) and 97.4% (FA, 6 cm). Without taking into account manufacturer BMI optimization, we found a progressive decrease of TBS mean values with increasing soft tissue thickness. The highest TBS difference between baseline scan and 6 cm was -0.179 (-14.27%) using HD.

Conclusions: Despite being slightly lower than that of BMD, TBS reproducibility was not affected up to 6 cm of increasing soft tissue thickness, and was even less influenced by fat than BMD reproducibility.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-018-1647-8DOI Listing

Publication Analysis

Top Keywords

soft tissue
24
increasing soft
20
tissue thickness
20
tbs reproducibility
16
bmd tbs
12
tbs
9
trabecular bone
8
bone score
8
reproducibility
8
reproducibility phantom
8

Similar Publications

Objective: Primary aim was to analyse dentoalveolar and skeletal effects induced by an anterior open bite (AOB) treatment protocol for intrusion of maxillary buccal segment. Secondary aim was to investigate whether a subsequent change occurred in hyoid position.

Materials And Methods: Study group included 28 non-growing subjects treated in academic setting for correction of AOB.

View Article and Find Full Text PDF

Background: The use of iodinated contrast-enhancing agents in computed tomography (CT) improves the visualization of relevant structures for radiotherapy treatment planning (RTP). However, it can lead to dose calculation errors by incorrectly converting a CT number to electron density.

Purpose: This study aimed to propose an algorithm for deriving virtual non-contrast (VNC) electron density from dual-energy CT (DECT) data.

View Article and Find Full Text PDF

Introduction: Sarcomas are rare cancers originating from mesenchymal tissues, manifesting in diverse anatomical locations, but notably in connective tissue, muscles and the skeleton. Thoracic sarcomas present a unique diagnostic and surgical challenge attributable to their rarity and pathoanatomy. Standard practice currently comprises wide surgical excision, often accompanied by adjuvant chemotherapy and/or radiotherapy.

View Article and Find Full Text PDF

Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!