Effect of thiazolidinedione phenylacetate derivatives on wound-healing activity.

Arch Pharm Res

Department of Polymer Science & Engineering, Chosun University, Gwangju, 501-759, South Korea.

Published: September 2019

The aim of this work was to evaluate the synthesis and structure-activity relationship of 4-((2,4-dioxothiazolidin-5-ylidene)methyl)phenyl 2-phenylacetate derivatives as potential wound-healing agents. The IC values of the lead compounds ranged from 0.01 to 0.05 µM. These compounds also increased the levels of extracellular prostaglandin E (PGE) in A549 cells. Among the synthesized compounds, compounds 66, 67, 69, and 86 increased PGE levels 3- to 4-fold of those achieved with the negative control. Introduction of a halogen at the intermediate phenyl ring, compounds 66, 67, 69, and 86 resulted in higher IC values, which indicated lower cytotoxicity than that observed upon the introduction of other substituents at the same position. In particular, cells exposed to compound 69 showed significantly improved wound healing, and the wound closure rate achieved was approximately 3.2-fold higher than that of the control. Therefore, compound 69 can be used for tissue regeneration and treatment of diverse diseases caused by PGE deficiency. Overall, our findings suggested that compound 69 might be a novel candidate for skin wound therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-018-1041-3DOI Listing

Publication Analysis

Top Keywords

compounds increased
8
compounds
5
thiazolidinedione phenylacetate
4
phenylacetate derivatives
4
derivatives wound-healing
4
wound-healing activity
4
activity aim
4
aim work
4
work evaluate
4
evaluate synthesis
4

Similar Publications

A real-world pharmacovigilance analysis of potential ototoxicity associated with sacubitril/valsartan based on FDA Adverse Event Reporting System (FAERS).

Sci Rep

December 2024

Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, is widely used to treat heart failure. Despite its efficacy, sacubitril/valsartan inevitably causes adverse events such as hypotension, renal dysfunction, hyperkalemia, and angioedema. Sacubitril/valsartan-associated ototoxicity is often underreported in clinical studies and real-world settings.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

Global emissions of polychlorinated naphthalenes from 1912 to 2050.

Nat Commun

December 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

Polychlorinated naphthalenes (PCNs) are persistent organic compounds that are regulated by the Stockholm Convention. Here, we estimate historical emissions from PCN production and use (1912-1987) and unintentional emissions from 20 categories (2000-2020). A random forest regression model projects emissions for 2020-2050.

View Article and Find Full Text PDF

Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.

View Article and Find Full Text PDF

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!