This study evaluates the chemistry, kinetics, and mass transfer aspects of the removal of NO and SO simultaneously from flue gas induced by the combined heat and Fe activation of aqueous persulfate. The work involves experimental studies and the development of a mathematical model utilizing a comprehensive reaction scheme for detailed process evaluation, and to validate the results of an experimental study at 30-70 °C, which demonstrated that both SO and Fe improved NO removal, while the SO is almost completely removed. The model was used to correlate experimental data, predict reaction species and nitrogen-sulfur (N-S) product concentrations, to obtain new kinetic data, and to estimate mass transfer coefficient (Ka) for NO and SO at different temperatures. The model percent conversion results appear to fit the data remarkably well for both NO and SO in the temperature range of 30-70 °C. The conversions ranged from 43.2 to 76.5% and 98.9 to 98.1% for NO and SO, respectively, in the 30-70 °C range. The model predictions at the higher temperature of 90 °C were 90.0 and 97.4% for NO and SO, respectively. The model also predicted decrease in Ka for SO of 1.097 × 10 to 8.88 × 10 s (30-90 °C) and decrease in Ka for NO of 4.79 × 10 to 3.67 × 10 s (30-50 °C) but increase of 4.36 × 10 to 4.90 × 10 s at higher temperatures (70-90 °C). This emerging sulfate-radical-based process could be applied to the treatment of flue gases from combustion sources. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-2453-9DOI Listing

Publication Analysis

Top Keywords

mass transfer
12
aqueous persulfate
8
combined heat
8
model
6
simultaneous removal
4
removal aqueous
4
persulfate activated
4
activated combined
4
experimental
4
heat experimental
4

Similar Publications

Identification of Butyrylcholinesterase-Derived Small Molecule Peptides Indicative of Novichok Nerve Agent Exposures.

Chem Res Toxicol

January 2025

Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, Georgia 30341, United States.

Novichok nerve agents, such as A-230, A-232, and A-234, were classified as Schedule 1 chemicals under the Chemical Weapons Convention (CWC) by the Organisation for the Prohibition of Chemical Weapons (OPCW) following poisoning incidents in 2018. As a result, the production, storage, and use of these chemicals are strictly prohibited by CWC signatory nations. The identification of biomarkers indicating Novichok exposure in humans is crucial for prompt detection and response to potential incidents involving these banned chemical weapons.

View Article and Find Full Text PDF

Monitoring technology for Cr(VI) adsorption and reduction by NMR spectroscopy.

Chem Commun (Camb)

January 2025

Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China.

This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.

View Article and Find Full Text PDF

Exploring the synergistic effect of NaOH/NaClO absorbent in a novel wet FGD scrubber to control SOx/NOx emissions.

Environ Monit Assess

January 2025

International Joint Research Center For Green Energy and Chemical Industry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Escalating SOx and NOx emissions from industrial plants necessitates customized scrubbing solutions to improve removal efficiency and tackle cost limitations in existing wet FGD units. This work investigates the real-time intensified removal pathways via an innovative two-stage countercurrent spray tower configuration strategically integrating NaOH (M) and NaOH/NaClO (M/M) to remove SOx and NOx emissions simultaneously from the industrial stack through a comprehensive parametric study of absorbents concentration, reaction temperature, gas flow rate, liquid to gas ratio (F/F), and absorbent showering head. Flue gas stream comprising SO bearing 4500 ppm, SO bearing 300 ppm, 70 ppm NO, and 50 ppm NO brought into contact with two scrubbing solutions as M, and a complex absorbent of M/M at varying respective ratios.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

Biosorption of cobalt (II) from an aqueous solution over acid modified date seed biochar: an experimental and mass transfer studies.

Environ Sci Pollut Res Int

January 2025

Department of Chemical Engineering, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.

Water pollution because of the presence of heavy metals remains a serious worry. The present work demonstrates the exclusion of cobalt ion (or Co(II)) from water using novel and cost-effective biosorbents. Initially, the biosorbent was chemically modified using orthophosphoric acid and then subjected to calcination to result acid modified date seed biochar (AMDB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!