Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigated the effect of the heat shock protein inducer O-[3-piperidino-2-hydroxy-1-propyl]-nicotinic amidoxime (BGP-15) on the morphology and contractile function of regenerating soleus muscles from mice. Cryolesioned soleus muscles from young mice treated daily with BGP-15 (15 mg/Kg) were evaluated on post-cryolesion day 10. At this time point, there was a significant decrease in the cross-sectional area of regenerating myofibers, maximal force, specific tetanic force, and fatigue resistance of regenerating soleus muscles. BGP-15 did not reverse the decrease in myofiber cross-sectional area but effectively prevented the reduction in tetanic force and fatigue resistance of regenerating muscles. In addition, BGP-15 treatment increased the expression of embryonic myosin heavy chain (e-MyHC), MyHC-II and MyHC-I in regenerating muscles. Although BGP-15 did not alter voltage dependent anion-selective channel 2 (VDAC2) expression in cryolesioned muscles, it was able to increase inducible 70-kDa heat shock protein (HSP70) expression. Our results suggest that BGP-15 improves strength recovery in regenerating soleus muscles by accelerating the re-expression of adult MyHC-II and MyHC-I isoforms and HSP70 induction. The beneficial effects of BGP-15 on the contractile function of regenerating muscles reinforce the potential of this molecule to be used as a therapeutic agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10974-018-9495-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!