Quantification of Inflammasome Adaptor Protein ASC in Biological Samples by Multiple-Reaction Monitoring Mass Spectrometry.

Inflammation

Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W, Calgary, AB, T2N 4Z6, Canada.

Published: August 2018

Inflammation is an integral component of many diseases, including chronic kidney disease (CKD). ASC (apoptosis-associated speck-like protein containing CARD, also PYCARD) is the key inflammasome adaptor protein in the innate immune response. Since ASC specks, a macromolecular condensate of ASC protein, can be released by inflammasome-activated cells into the extracellular space to amplify inflammatory responses, the ASC protein could be an important biomarker in diagnostic applications. Herein, we describe the development and validation of a multiple reaction monitoring mass spectrometry (MRM-MS) assay for the accurate quantification of ASC in human biospecimens. Limits of detection and quantification for the signature DLLLQALR peptide (used as surrogate for the target ASC protein) were determined by the method of standard addition using synthetic isotope-labeled internal standard (SIS) peptide and urine matrix from a healthy donor (LOQ was 8.25 pM, with a ~ 1000-fold linear range). We further quantified ASC in the urine of CKD patients (8.4 ± 1.3 ng ASC/ml urine, n = 13). ASC was positively correlated with proteinuria and urinary IL-18 in CKD samples but not with urinary creatinine. Unfortunately, the ASC protein is susceptible to degradation, and patient urine that was thawed and refrozen lost 85% of the ASC signal. In summary, the MRM-MS assay provides a robust means to quantify ASC in biological samples, including clinical biospecimens; however, sample collection and storage conditions will have a critical impact on assay reliability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-018-0787-6DOI Listing

Publication Analysis

Top Keywords

asc protein
16
asc
12
inflammasome adaptor
8
adaptor protein
8
asc biological
8
biological samples
8
monitoring mass
8
mass spectrometry
8
mrm-ms assay
8
protein
7

Similar Publications

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) form an inflammasome by assembling with apoptosis-associated speck-like protein containing a CARD (ASC) and procaspase-1 that plays a pivotal role in various neurodegenerative diseases such as Alzheimer's and Parkinson diseases. We designed native peptides derived from the PYDs of NLRP3 and ASC based on their interfacial interaction to inhibit NLRP3 inflammasome formation. Screening revealed that , derived from NLRP3, inhibits inflammasome activation.

View Article and Find Full Text PDF

A OHCs-Targeted Strategy for PEDF Delivery in Noise-Induced Hearing Loss.

Adv Healthc Mater

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China.

Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear.

View Article and Find Full Text PDF

Different types of feline papillomaviruses (PVs) are associated with a variety of skin lesions and neoplasia, such as papillomas and cell carcinomas, but the virus can also be found in healthy skin. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of veterinary experts on feline infectious diseases from 11 European Countries, discusses the current knowledge of feline PV infections. Cats most likely become infected through lesions or abrasions of the skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!