Comparison of aboveground vegetation and soil seed bank composition at sites of different grazing intensity around a savanna-woodland watering point in West Africa.

J Plant Res

Unité de Formation et de Recherche en Sciences de la Vie et de la Terre/Laboratoire de Biologie et Ecologie Végétales (UFR/SVT), Université Ouaga I Pr Joseph Ki-Zerbo, Ouagadougou, Burkina Faso.

Published: September 2018

Grazing removes a plant's aboveground vegetative and reproductive tissues and can modify the soil seed bank, potentially impacting the restoration of preferred species. Knowledge about aboveground vegetation and species composition of soil seed bank and the processes that contribute to vegetation recovery on and surrounding watering points subjected to grazing is lacking. Successful restoration strategies hinge on addressing these knowledge gaps. We assessed the effects of livestock grazing on aboveground vegetation and soil seed bank characteristics along a river bank and surrounding areas subject to different grazing intensities and draw implications for restoration. Plots (50 × 50 m) were established along five transects representing differing levels of grazing intensity. Soil samples were taken from three layers within each plot to determine soil properties and species composition of soil seed bank using the seedling emergence method. Heavy grazing resulted in the disappearance of perennial grasses, a reduction in species diversity and a decrease in soil nutrients with increased soil depth. Overall, the similarity between the extant aboveground vegetation and flora within the soil seed bank was low. The soil seed bank was dominated by herbaceous species and two woody species, suggesting that many woody species are not accumulating in the soil. With increasing soil depth, the seed density and richness declined. Canonical correspondence analyses (CCAs) showed that emerged seedlings from the soil seed bank were significantly influenced by soil carbon, organic matter, total nitrogen, total potassium and soil cation exchange capacity. This finding suggests that current grazing practices have a negative impact on the vegetation surrounding watering points; hence there is a need for improved grazing management strategies and vegetation restoration in these areas. The soil seed bank alone cannot restore degraded river banks; active transfer of propagules from adjacent undisturbed forest areas is essential.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-018-1048-3DOI Listing

Publication Analysis

Top Keywords

soil seed
36
seed bank
36
soil
17
aboveground vegetation
16
seed
10
bank
10
grazing
9
vegetation soil
8
grazing intensity
8
species composition
8

Similar Publications

Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously.

View Article and Find Full Text PDF

Background: Fomesafen is a selective herbicide widely used to control post-emergent broad-leaf weeds in soybean and peanut fields. Because of its persistent nature in soil, it can suppress subsequent crops, including wheat. There is limited information focusing on methods of protecting wheat from fomesafen injury by soil residue.

View Article and Find Full Text PDF

Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.

View Article and Find Full Text PDF

Soil nutrients and meteorological conditions are pivotal environmental factors influencing plant growth and development. This study systematically analyzes how soil nutrients and meteorological factors influence the phenotypic growth and seed production of wild Elymus nutans in Tibet. These environmental factors are critical ecological determinants, and this research seeks to unveil the complex and diverse ecological adaptation mechanisms of the species.

View Article and Find Full Text PDF

Enhanced photocatalytic dye detoxification by banana peel derived enzyme inherited ZnO/g-CN nanocomposite: Validation by soil health and seed germination analyses.

Int J Biol Macromol

January 2025

PG & Research Department of Physics, AVVM Sri Pushpam College (Autonomous), [Affiliated to Bharathidasan University, Tiruchirappalli], Poondi, Thanjavur 613503, Tamil Nadu, India. Electronic address:

Development of bio-supported photocatalysts has become a pressing need in the field of environmental remediation. This work reports the synthesis of bio-enzyme (from banana peels) inherited (ZnO/g-CN) nanocomposite by simple soft chemical method and its photocatalytic degradation ability against the mixed dye (Methylene blue (MB) + Rhodamine-B (RhB)) under UV irradiation. Synthesized nanoparticles were characterized using experimental techniques XRD, FESEM, TEM, EDAX, XPS, UV-vis-NIR spectroscopy and FTIR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!