Objectives: Annual global deaths from cryptococcal meningitis (CM) are estimated at 180 000 and mortality is as high as 30%, even with optimal therapy. VT-1598 is a novel fungal CYP51 inhibitor with potent intrinsic antifungal activity against Cryptococcus. We report here VT-1598's in vivo antifungal activity in a murine model of CM.

Methods: Single-dose plasma and brain pharmacokinetics in mice and MIC for Cryptococcus neoformans H99 were determined prior to efficacy studies. Short-course monotherapy and combination doses were explored with the endpoint of brain fungal burden. A survival study was also conducted using monotherapy treatment with fungal burden measured after a 6 day drug washout.

Results: Oral doses of VT-1598 had good plasma and brain exposure and resulted in significant (P < 0.0001) and dose-dependent reductions in brain fungal burden, reaching a 6 log10 reduction. Unlike either positive drug control (fluconazole or liposomal amphotericin B), both mid and high doses of VT-1598 reduced fungal burden to below levels measured at the start of treatment. When VT-1598 was dosed in the survival study, no VT-1598-treated animal succumbed to the infection. Whereas fluconazole showed a 2.5 log10 increase in fungal burden after the 6 day washout, the VT-1598 mid- and high-dose animals showed almost no regrowth (<0.5 log10). In a separate fungal burden study using suboptimal doses of VT-1598 and liposomal amphotericin B to probe for combination effects, each combination had a positive effect relative to corresponding monotherapies.

Conclusions: These pre-clinical in vivo data strongly support clinical investigation of VT-1598 as a novel therapy for this lethal infection.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dky242DOI Listing

Publication Analysis

Top Keywords

novel fungal
8
fungal cyp51
8
cyp51 inhibitor
8
murine model
8
cryptococcal meningitis
8
antifungal activity
8
plasma brain
8
fungal burden
8
inhibitor vt-1598
4
vt-1598 efficacious
4

Similar Publications

Genomic data on from the African continent are currently lacking, resulting in the region being under-represented in global analyses of infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare isolates from diarrhoeic human patients (=142), livestock (=38), poultry manure (=5) and dogs (=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global population. In addition, selected isolates were tested for antimicrobial susceptibility (=33) and characterized by PCR ribotyping (=53).

View Article and Find Full Text PDF

Functional characterization of novel anti-DEFA5 monoclonal antibody clones 1A8 and 4F5 in inflammatory bowel disease colitis tissues.

Inflamm Res

January 2025

Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd, Nashville, TN, USA.

Background: The aberrant expression of α defensin 5 (DEFA5) protein in colonic inflammatory bowel diseases (IBDs) underlies the distinct pathogenesis of Crohn's colitis (CC). It can serve as a biomarker for differentiating CC from Ulcerative colitis (UC), particularly in Indeterminate colitis (IC) cases into UC and CC. We evaluated the specificity of commercially available anti-DEFA5 antibodies, emphasizing the need to further validate their appropriateness for a given application and highlighting the necessity for novel antibodies.

View Article and Find Full Text PDF

There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control.

View Article and Find Full Text PDF

Unlabelled: Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in .

View Article and Find Full Text PDF

Unlabelled: Mutations affecting flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving , , and , which creates a feedback system to regulate flagella production. Through genomic analysis of clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene and regulatory gene .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!