AI Article Synopsis

  • MIS/AMH, produced in ovarian granulosa cells, is believed to inhibit ovarian folliculogenesis and steroidogenesis in women of reproductive age.
  • The study aimed to investigate the expression of the MISRII/AMHRII receptor in ovarian tissues, using human samples from 25 patients who underwent ovarian surgery and analyzing cell-specific expression via RT-PCR and immunohistochemistry.
  • Findings indicated that MISRII/AMHRII is expressed in both granulosa and theca cells, suggesting MIS/AMH may play a role in autocrine, endocrine, and paracrine processes within the ovaries.

Article Abstract

Context: Müllerian-inhibiting substance/anti-Müllerian hormone (MIS/AMH) is produced in the ovarian granulosa cells, and it is believed to inhibit ovarian folliculogenesis and steroidogenesis in women of reproductive age.

Objective: To investigate the expression of MIS/AMH type II receptor (MISRII/AMHRII) that binds MIS/AMH in the ovaries of reproductive-age women; to identify the exact targets of MIS/AMH.

Design: Laboratory study using human ovarian tissue.

Setting: University hospital.

Patients: Tissue samples from 25 patients who had undergone ovarian surgery.

Interventions: The segregation of ovarian granulosa and theca cells by laser microdissection was followed by RT-PCR, analyzing MISRII/AMHRII mRNA expression. Afterward, in situ hybridization and immunohistochemistry were performed to determine the localization of MISRII/AMHRII mRNA and protein expression.

Main Outcome Measures: MISRII/AMHRII mRNA expression by RT-PCR, in situ hybridization, and immunohistochemistry.

Results: MISRII/AMHRII were expressed in granulosa and theca cells of preantral and antral follicles. The granulosa cells showed stronger MISRII/AMHRII expression than theca cells. MISRII/AMHRII mRNA staining of granulosa and theca cells in large antral follicles, early atretic follicles, and corpus luteum waned but were still detected weakly, showing higher expression in theca cells than in granulosa cells. However, MISRII/AMHRII protein in the granulosa layer of the atretic follicle and corpus luteum could not be assessed.

Conclusions: As MISRII/AMHRII is expressed in both granulosa and theca cells, this indicates that MIS/AMH, produced in the granulosa cells, is active in the theca cells as well. MIS/AMH is most likely actively involved not only in the autocrine and endocrine processes but also in the paracrine processes involving theca cells.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2018-00549DOI Listing

Publication Analysis

Top Keywords

theca cells
36
granulosa cells
16
granulosa theca
16
misrii/amhrii mrna
16
cells
13
theca
9
granulosa
9
misrii/amhrii
9
müllerian-inhibiting substance/anti-müllerian
8
substance/anti-müllerian hormone
8

Similar Publications

Luteinizing hormone receptor knockout mouse: What has it taught us?

Andrology

January 2025

Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK.

Luteinizing hormone (LH), along with its agonist choriongonadotropin (hCG) in humans, is the key hormone responsible for the tropic regulation of the gonadal function. LH and hCG act through their cognate receptor, the luteinizing hormone/choriongonadotropin receptor (LHCGR; more appropriately LHR in rodents lacking CG), located in the testis in Leydig cells and in the ovary in theca, luteal, and luteinizing granulosa cells. Low levels in LHCGR are also expressed in numerous extragonadal sites.

View Article and Find Full Text PDF

Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.

View Article and Find Full Text PDF

Yessotoxin is one of the shellfish toxins leading to mussel farm closures in the Adriatic Sea of Italy. Two putative Gonyaulax spinifera strains GSA0501 and GSA0602 are known as yessotoxins producers, but their identities have remained elusive since 2005. To address this gap, we established five Gonyaulax strains by incubating sediments from the Adriatic Sea and subsequently isolating single cells.

View Article and Find Full Text PDF

Circulating Interleukin-6 Mediates PM-Induced Ovarian Injury by Suppressing the PPARγ Pathway.

Research (Wash D C)

December 2024

Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Exposure to airborne fine particulate matter (PM) is strongly associated with poor fertility and ovarian damage. However, the mechanism underlying this remains largely unclear. Here, we found that PM markedly impaired murine ovarian reserve, decreased hormone levels, and aggravated ovarian inflammation.

View Article and Find Full Text PDF

Polycomb in female reproductive health: patterning the present and programming the future.

Reprod Fertil Dev

December 2024

Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia.

Article Synopsis
  • - Epigenetic modifications influence various biological processes, including gene expression and cell differentiation, and can be passed down through generations, affecting inherited traits and health.
  • - The ovary plays a vital role in female reproductive health by producing oocytes and hormones, and it undergoes significant epigenetic programming that is crucial for offspring well-being.
  • - Recent research highlights the importance of Polycomb proteins in regulating ovarian function and epigenetic inheritance, suggesting that further understanding of these mechanisms could improve knowledge of reproductive health issues like ovarian dysfunction and fertility disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!