Proteases are probably underestimated exposure agents in bioaerosols. Their roles as barrier disrupters in allergic sensitization and activators of innate inflammation call for more attention in exposure-response studies. The main objectives of this study was (i) to establish a suitable method for detection of small quantities of proteases in filtered air samples and (ii) to utilize the method to characterize exposure to proteases in a salmon industry work environment. Analysis of proteases in filtered air samples was based on zymography, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis with 0.1% gelatin as substrate added in the polyacrylamide gel. Gelatinase activity was evident as cleared (unstained) regions. The area of these regions was quantified using image analysis (UVP Vision Works®). Standard curves with known amounts of active porcine trypsin were added to each gel. Validation of 11 non-linear standard curves showed R2 (range) = 0.8989-0.9882, limit of detection = 0.056 nM, lower limit of quantification = 0.161 nM, and coefficients of variations (range) = 20-28%. Sampling of bioaerosols in salmon industry was performed using polytetrafluoretylene filters with an airflow of 3 l min-1. All samples contained visible bands close to the size of porcine trypsin (23.3 kDa). The bands did not disappear in the presence of EDTA but abolished by Pefabloc, demonstrating that the enzyme is a serine protease, most likely salmon trypsin. Airborne levels of active protease were below the statistical detection limit in the filleting department but quantifiable in extract samples from the slaughter department. Three filtered air samples from the slaughter department showed air concentrations of 6.2, 16.5, and 27.0 ng m-3 air. We conclude that zymography is a sensitive and reliable method for exposure assessment of active proteases in indoor environmental samples. We recommend this assay for use in occupational studies to characterize and quantify exposure to active proteases in bioaerosols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annweh/wxy050 | DOI Listing |
Foods
November 2024
College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
The self-quenching fluorogenic probe facilitates precise identification of LAMP (loop-mediated isothermal amplification) amplicons, unaffected by non-specific products resulting from primer dimers. However, low quenching efficiency by surrounding nucleobases leads to high background signal, posing significant challenges for visual inspection with the naked eye. The present study aims to identify an oligonucleotide sequence that is complementary to the self-quenching fluorogenic probe, and to employ the fluorescence super-quenching mechanism of double-stranded DNA to establish a visualization system for the LAMP assay.
View Article and Find Full Text PDFJ Fish Biol
December 2024
Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, Tromsø, Norway.
Wild Atlantic salmon migrate to sea following completion of a developmental process known as parr-smolt transformation (PST), which establishes a seawater (SW) tolerant phenotype. Effective imitation of this aspect of anadromous life history is a crucial aspect of commercial salmon production, with current industry practice being marred by significant losses during transition from the freshwater (FW) to SW phase of production. The natural photoperiodic control of PST can be mimicked by exposing farmed juvenile fish to a reduced duration photoperiod for at least 6 weeks before increasing the photoperiod in the last 1-2 months before SW transfer.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linli 276000, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
Front Genet
November 2024
Department of Breeding and Genetics, Nofima, Ås, Norway.
Infectious Pancreatic Necrosis virus (IPNV) is one of the major threats to the animal welfare and economy of the rainbow trout farming industry. Previous research has demonstrated significant genetic variation for resistance against IPNV. The main objective of the study was to investigate the genetic architecture of resistance against IPNV in rainbow trout fry.
View Article and Find Full Text PDFJ Fish Dis
December 2024
Laboratorio de Cultivo de Peces, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile.
In Chile, Atlantic salmon and rainbow trout face significant production challenges due to the presence of Flavobacterium psychrophilum, which generates severe disease issues and economic losses. To address this, the salmon industry relies on vaccines and antibiotics, the latter raising concerns about bacterial resistance. For that reason, our study explores an alternative strategy for controlling F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!