A novel methodology for the analysis of oxygen exchange in practically important nonstoichiometric oxides with mixed ionic electronic conductivity (MIEC) is suggested. It is based on the fact that the kinetic and thermodynamic properties of such oxides vary continuously with oxygen stoichiometry. This allows MIEC oxides to be considered as a homologous series, with the difference that traditional series are discrete in their chemical composition whereas MIEC oxides are continuous in oxygen stoichiometry. Analysis of the relations between Gibbs energies of reactions and activation barriers traditionally performed for homologous series can be useful in studies of oxygen exchange in MIEC oxides. To demonstrate the approach, thermodynamic and oxygen-exchange kinetics parameters are measured as functions of oxygen nonstoichiometry δ for two perovskites, SrCo0.8Fe0.2O3-δ and SrFeO3-δ, having metal-like and p-type semiconducting conductivities, respectively. Both oxides are shown to obey linear free energy relationships of the Brønsted-Evans-Polanyi form in spite of their different types of electronic structures. The results open up new possibilities for understanding the mechanism of the rate determining step of oxygen exchange in MIEC oxides.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp02924eDOI Listing

Publication Analysis

Top Keywords

oxygen exchange
16
miec oxides
16
homologous series
12
nonstoichiometric oxides
8
oxides continuous
8
oxygen stoichiometry
8
exchange miec
8
oxygen
7
oxides
7
miec
5

Similar Publications

: Pulmonary embolism (PE) is a potentially serious condition characterized by the blockage of blood vessels in the lungs, often presenting significant diagnostic challenges due to its non-specific symptoms. This study aimed to evaluate the utility of the alveolar-arterial (A-a) oxygen gradient as a diagnostic tool for PE, hypothesizing that it could enhance early detection when combined with other clinical markers. : We retrospectively analyzed 168 patients at the University Hospital Center Split.

View Article and Find Full Text PDF

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Surface S-Doped Nanostructured RuO and Its Anion Passivating Effect for Efficient Overall Seawater Splitting.

ACS Nano

January 2025

State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Electrolysis of seawater for hydrogen (H) production to harvest clean energy is an appealing approach. In this context, there is an urgent need for catalysts with high activity and durability. RuO electrocatalysts have shown efficient activity in the hydrogen and oxygen evolution reactions (HER and OER), but they still suffer from poor stability.

View Article and Find Full Text PDF

The pathobiology of neurovascular aging.

Neuron

January 2025

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. Electronic address:

As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels.

View Article and Find Full Text PDF

At the crossroads of biology and electronics.

Curr Opin Biotechnol

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 48, CH-4056 Basel, Switzerland; University of Basel, Faculty of Science, Schanzenstrasse 48, CH-4056 Basel, Switzerland. Electronic address:

All cells are innately equipped with systems to detect and respond to electrical inputs in the form of reactive oxygen species, redox signaling, or membrane depolarization through ion exchange. Electrogenetics aims to leverage these cellular systems to create interfaces between biology and electronics, in order to achieve levels of precision in spatiotemporal control of gene and protein expression that are not possible with chemo-, opto-, or thermogenetics. In this review, we discuss the impact, challenges, and prospects of electrogenetics in the context of recent cutting-edge applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!