The development of nanomaterials for stable, controlled delivery of drugs and efficient suppression of tumor growth with desirable biosafety remains challenging in the nano-biomedical field. In this study, we prepared and optimized mesoporous bioactive glass (MBG) nanospheres to establish a functional drug delivery system and analyzed the effect of the dendritic mesoporous structure on drug loading and release. We then utilized an in vitro model to examine the biological effects of dendritic MBG nanospheres on normal and tumor cells and studied the molecular mechanism underlying specific tumor suppression by MBG nanospheres. Finally, we investigated the combinational effect of MBG nanospheres and a cancer therapeutic drug with an in vivo tumor xenograft model. Our results show that the dendritic MBG nanospheres have been successfully synthesized by optimizing calcium: silicon ratio. MBG nanospheres exhibit a dendritic mesoporous structure with a large specific surface area, demonstrate high drug loading efficiency, and release drugs in a controlled fashion to effectively prolong drug half-life. Ca in nanospheres activates transient receptor potential channels and calcium-sensing receptor on tumor cells, mediates calcium influx, and directly regulates the calpain-1-Bcl-2-caspase-3 signaling pathway to specifically suppress tumor growth without affecting normal cells. In addition, dendritic MBG nanospheres synergize with cancer drugs to improve antitumor efficacy and reduce systemic toxicity. Dendritic MBG nanospheres with antitumor activity and controlled drug release have been successfully achieved and the underlying molecular mechanism was elucidated, paving the way for translational application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b05616 | DOI Listing |
Biomater Adv
September 2023
Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao 266071, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Weifang Medical University, Weifang 261042, China. Electronic address:
Ulcerative colitis (UC) is a chronic and recurrent intestinal disease of unknown aetiology, and the few treatments approved for UC have serious side effects. In this study, a new type of uniformly monodispersed calcium-enhanced radial mesoporous micro-nano bioactive glass (HCa-MBG) was prepared for UC treatment. We established cellular and rat UC models to explore the effects and mechanism of HCa-MBG and traditional BGs (45S5, 58S) on UC.
View Article and Find Full Text PDFMaterials (Basel)
November 2022
Center for Precision Engineering, Guangzhou Institutes of Advanced Technology, Guangzhou 511458, China.
Selective laser melting manufacture of patient specific Ti implants is serving as a promising approach for bone tissue engineering. The success of implantation is governed by effective osseointegration, which depends on the surface properties of implants. To improve the bioactivity and osteogenesis, the universal surface treatment for SLM-Ti implants is to remove the primitive roughness and then reengineer new roughness by various methods.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2021
Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China; Shenzhen Institute of Information Technology, Shenzhen 518172, China. Electronic address:
Implant-related bacterial infection is a serious complication, which even causes implant failure. Silver (Ag) nanoparticles are broadly used antibacterial agents due to their excellent antibacterial ability and broad-spectrum bactericidal property. However, the significance of burst release cannot be entirely ignored.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2021
Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain. Electronic address:
Mesoporous bioactive glasses (MBGs) are bioceramics designed to induce bone tissue regeneration and very useful materials with the ability to act as drug delivery systems. MBGs can be implanted in contact with bone tissue in different ways, as particulate material, in 3D scaffolds or as nanospheres. In this work, we assessed the effects of particles of mesoporous bioactive glass MBG-75S and mesoporous nanospheres NanoMBG-75S on RAW 264.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2020
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China. Electronic address:
Conventional treatments of bone tumor involve removal followed by radiation and chemotherapeutic drugs that may have limitations and cause secondary damage. The development of functional filling biomaterial has led to a new strategy for tumor therapy. In this study, a novel therapeutic ion selenium doped mesoporous bioactive glasses (Se/MBG) nanospheres were successfully synthesized by a facile sol-gel technique using cetyl trimethyl ammonium bromide (CTAB) as the template, which had uniform spherical morphology (≈ 400 nm), high surface area (>400 m/g) and mesopore volume (≈0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!