Degradable electronics represent a rapidly emerging field of science and technology with the potential to serve short-term medical implantation applications where the device disappears once its function is complete. Despite many efforts in developing new types of degradable electronics, many of such systems are nonelastic and incompatible with the dynamic motion of native soft/elastic biological tissues. Herein, a photo-crosslinkable hydrogel with integrated electronics that are highly stretchable and degradable in liquid environments is demonstrated. The fabrication process takes advantage of facile laser micromachining of conductive patterns directly onto the hydrogel under ambient conditions and permanent hydrogel-hydrogel bonding. The robustness and degradation rate of hydrogel and the laser-processed encapsulated stretchable circuits is systematically investigated in different solutions under various conditions. Biocompatibility tests with non-neoplastic cells (HMT 3522 S1) and cancer cells (T4-2 and MDA-MB-231) are performed in 2D and 3D cell culture systems to confirm instead of evaluate the safety of the hydrogel and its byproducts during degradation as well as the zinc metal used in this technology. As a proof of concept, a stretchable hydrogel-based device that can be used for remote/wireless delivery of thermal energy into the tissue in contact with the hydrogel is fabricated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.201800231 | DOI Listing |
BMC Infect Dis
January 2025
Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China.
Objective: Long-term management of people living with HIV (PLWHs) often relies on CD4 T cell counts for assessing immune recovery, yet a single metric offers limited information. This study aimed to explore the association between the CD4/CD8 ratio and T lymphocyte activities in PLWHs.
Methods: 125 PLWHs and 31 HIV-uninfected controls (UCs) were enrolled and categorized into four groups based on their CD4/CD8 ratios: extremely low ratio (ELR) group: 0.
Nat Commun
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.
View Article and Find Full Text PDFAtherosclerosis
December 2024
Institute for Clinical Chemistry, University Hospital and University Zurich, 8091, Zürich, Switzerland. Electronic address:
Sphingolipids (SL) are crucial components of cellular membranes and play pivotal roles in various biological processes, including cell growth, differentiation, apoptosis, and stress responses. All SL contain a sphingoid base (SPB) backbone which is the shared and class-defining element. SPBs are heterogeneous in length and structure.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
January 2025
R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India. Electronic address:
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
January 2025
Department of Microbiology, Gargi College, University of Delhi, New Delhi, India. Electronic address:
The CRISPR-Cas system has emerged as a revolutionary tool in genetic research, enabling highly precise gene editing and significantly advancing the field of cardiovascular science. This chapter provides a comprehensive overview of the latest developments in utilizing CRISPR-Cas technologies to investigate and treat heart diseases. It delves into the application of CRISPR-Cas9 for creating accurate models of complex cardiac conditions, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and various arrhythmias, which are essential for understanding disease mechanisms and testing potential therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!