Dual targeting of a nuclearly encoded protein into two different cell organelles is an exceptional event in eukaryotic cells. Yet, the frequency of such dual targeting is remarkably high in case of mitochondria and chloroplasts, the two endosymbiotic organelles of plant cells. In most instances, it is mediated by "ambiguous" transit peptides, which recognize both organelles as the target. A number of different approaches including in silico, in organello as well as both transient and stable in vivo assays are established to determine the targeting specificity of such transit peptides. In this review, we will describe and compare these approaches and discuss the potential role of this unusual targeting process. Furthermore, we will present a hypothetical scenario how dual targeting might have arisen during evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-018-0543-7DOI Listing

Publication Analysis

Top Keywords

dual targeting
12
mitochondria chloroplasts
8
transit peptides
8
targeting
6
rule exception?
4
exception? evaluate
4
evaluate relevance
4
dual
4
relevance dual
4
dual protein
4

Similar Publications

Rare dual MYH9-ROS1 fusion variants in a patient with lung adenocarcinoma: A case report.

Medicine (Baltimore)

January 2025

Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.

Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.

View Article and Find Full Text PDF

Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.

View Article and Find Full Text PDF

Semi-Synthesis of Dimeric Cannabidiol Derivatives and Evaluation of their Affinity at Neurological Targets.

J Nat Prod

January 2025

Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.

Cannabidiol (CBD) is a natural product associated with a wide range of biological and therapeutic activities. Despite the widespread cultural acceptance of CBD as a medicinal agent, much remains to be determined regarding its precise mechanism(s) of action in treating multiple conditions. CBD has been shown to promiscuously interact with several neurological targets with varying affinities.

View Article and Find Full Text PDF

Protocol to generate dual-target compounds using a transformer chemical language model.

STAR Protoc

January 2025

Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, 53115 Bonn, Germany; Lamarr Institute for Machine Learning and Artificial Intelligence, Friedrich-Hirzebruch-Allee 5/6, 53115 Bonn, Germany. Electronic address:

Here, we present a protocol to generate dual-target compounds (DT-CPDs) interacting with two distinct target proteins using a transformer-based chemical language model. We describe steps for installing software, preparing data, and pre-training the model on pairs of single-target compounds (ST-CPDs), which bind to an individual protein, and DT-CPDs. We then detail procedures for assembling ST- and corresponding DT-CPD data for specific protein pairs and evaluating the model's performance on hold-out test sets.

View Article and Find Full Text PDF

α-Glucosidase inhibitory activities of polyphenols from Mesua ferrea L. leaves.

Chem Biodivers

January 2025

Kunming Institute of Botany Chinese Academy of Sciences, Key laboratory of economic plants and biotechnology, 132# Lanhei Road, Heilongtan, Kunming, Yunnan, China, 650201, Kunming, CHINA.

Mesua ferrea L. is used in Ayurvedic and Thai medicine for treating various diseases, including diabetes. This study aimed to isolate and identify the bioactive constituents from M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!