Influenza virus can cause both seasonal infections and unpredictable pandemics. Rapidly evolving avian H5N1 and  H7N9 viruses have a potential pandemic threat for humans. Since avian Influenza can be transmitted by domestic birds, serving as a key link between wild birds and humans, an effective measure to control the influenza transmission would be eradication of the infection in poultry. It is known that the virus penetrates into the cell through binding with the terminal oligosaccharides - sialic acids (SA) - on the cell surfaces. Removal of SA might be a potential antiviral strategy. An approach to developing chicken lines that are resistant to influenza viruses could be the creation of genetically modified birds. Thus it is necessary to select a gene that provides defense to influenza. Here we have expressed in cells a range of exogenous sialidases and estimated their activity and specificity towards SA residues. Several bacterial, viral and human sialidases were tested. We adopted bacterial sialidases from and for expression on the cell surface by fusing catalytic domains with transmembrane domains. We also selected Influenza A/PuertoRico/8/34/H1N1 neuraminidase and human membrane sialidase ( ) genes. Lectin binding assay was used for estimation of a α (2,3)-sialylation level by fluorescent microscopy and FACS.   We compared sialidases from bacteria, Influenza virus and human. Sialidases from and Influenza A neuraminidase effectively cleaved α (2-3)-SA receptors. Viral neuraminidase demonstrated a higher activity. Sialidases from and did not show any activity against α (2-3) SA under physiological conditions. : Our results demonstrated that sialidases with different specificity and activity can be selected as genes providing antiviral defence. Combining chosen sialidases with different activity together with tissue-specific promoters would provide an optimal level of desialylation. Tissue specific expression of the sialidases could protect domestic birds from infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008855PMC
http://dx.doi.org/10.12688/f1000research.13496.2DOI Listing

Publication Analysis

Top Keywords

influenza
9
sialidases
9
influenza virus
8
domestic birds
8
human sialidases
8
sialidases activity
8
activity
5
evaluation potential
4
potential defensive
4
defensive strategy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!