Autophagy is an essential process of cellular waist clearance that becomes altered following spinal cord injury (SCI). Details on these changes, including timing after injury, underlying mechanisms, and affected cells, remain controversial. Here we present a characterization of autophagy in the mice spinal cord before and after a contusive SCI. In the undamaged spinal cord, analysis of LC3 and Beclin 1 autophagic markers reveals important differences in basal autophagy between neurons, oligodendrocytes, and astrocytes and even within cell populations. Following moderate contusion, western blot analyses of LC3 indicates that autophagy increases to a maximum at 7 days post injury (dpi), whereas unaltered Beclin 1 expression and increase of p62 suggests a possible blockage of autophagosome clearance. Immunofluorescence analyses of LC3 and Beclin 1 provide additional details that reveal a complex, cell-specific scenario. Autophagy is first activated (1 dpi) in the severed axons, followed by a later (7 dpi) accumulation of phagophores and/or autophagosomes in the neuronal soma without signs of increased initiation. Oligodendrocytes and reactive astrocytes also accumulate phagophores and autophagosomes at 7 dpi, but whereas the accumulation in astrocytes is associated with an increased autophagy initiation, it seems to result from a blockage of the autophagic flux in oligodendrocytes. Comparison with previous studies highlights the complex and heterogeneous autophagic responses induced by the SCI, leading in many cases to contradictory results and interpretations. Future studies should consider this complexity in the design of therapeutic interventions based on the modulation of autophagy to treat SCI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005838 | PMC |
http://dx.doi.org/10.3389/fncel.2018.00164 | DOI Listing |
J Vet Intern Med
January 2025
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
Background: Clinical characteristics of cervical hydrated nucleus pulposus extrusion (HNPE) in dogs compared to other causes of cervical myelopathy are not well described.
Hypothesis/objectives: To evaluate for clinical characteristics and mechanical ventilation likelihood associated with HNPE compared to other causes of cervical myelopathy.
Animals: Three hundred seventy-seven client-owned dogs from 2010 to 2022.
Nutrients
December 2024
Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.
Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
The journal retracts the article titled "Long Coding RNA XIST Contributes to Neuronal Apoptosis through the Downregulation of AKT Phosphorylation and Is Negatively Regulated by miR-494 in Rat Spinal Cord Injury" [...
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia.
Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Orthopedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City 824, Taiwan.
Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!