Background: Although the European Pet Food Industry Federation (FEDIAF) stated that labels must be accurate and provide detailed information on the ingredients, mislabeling of pet food has been documented by several authors. This phenomenon is of particular concern when related to products used as elimination diets for the diagnosis of adverse food reaction (AFR) in dogs and cats because the presence of undeclared ingredients may negatively interfere with the trial and prevent the veterinarian from making an appropriate diagnosis. The aim of this study was to shed light upon the problem of contamination and mislabeling in both dry and wet novel protein diets (NPDs) and hydrolyzed protein diets (HPDs) using a microarray-based commercial kit which tests for the presence of 19 animal species.
Results: Of the 40 analyzed products (9 dry NPDs, 22 wet NPDs, 6 dry HPDs and 3 wet HPDs), ten presented a content that correctly matched the label, while five did not contain the declared animal species, twenty-three revealed the presence of undeclared animal species, and two had a vague label that did not allow the evaluation of its accuracy. The most frequently contaminants identified in both dry and wet pet foods were pork, chicken and turkey. The presence of undeclared animal species was higher in dry than wet pet foods; furthermore, a lower number of contaminating animal species was identified in HPDs than NPDs (4 vs 10), and a lower number of contaminated HPDs (6 out of 9, 67%) than contaminated NPDs was detected (24 out of 31, 77%). Thirteen out of 14 brands tested presented at least one mislabeled product.
Conclusions: Mislabeling seems to be a widespread issue in pet foods used as elimination diets. Contamination can occur in all types of products used for the purpose, although dry NPDs are the main issue. Due to the high risk of contamination, particular attention should be given to both the selection of raw material suppliers and the production process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020431 | PMC |
http://dx.doi.org/10.1186/s12917-018-1528-7 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27701.
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045.
Climate change is increasing the frequency of large-scale, extreme environmental events and flattening environmental gradients. Whether such changes will cause spatially synchronous, large-scale population declines depends on mechanisms that limit metapopulation synchrony, thereby promoting rescue effects and stability. Using long-term data and empirical dynamic models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity in environmental responses, and environmental gradients to assess their role in inhibiting synchrony across 36 marine fish and invertebrate species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!