Background And Aims: Salvia is the largest genus within Lamiaceae, with about 980 species currently recognized. East Asia, with approx. 100 species, is one of the three major biodiversity centres of Salvia. However, relationships within this lineage remain unclear, and the staminal lever mechanism, which may represent a key innovation within the genus, has been understudied. By using six genetic markers and nearly comprehensive taxon sampling, this study attempts to elucidate relationships and examine evolutionary trends of staminal development within the East Asia (EA) Salvia clade.
Methods: Ninety-one taxa of EA Salvia were sampled and 34 taxa representing all other major lineages of Salvia were included for analysis. Two nuclear [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] and four chloroplast (psbA-trnH, ycf1-rps15, trnL-trnF and rbcL) DNA markers were used for phylogenetic analysis employing maximum parsimony (MP), maximum likelihood (ML) and BEAST, with the latter also used to estimate divergence times.
Key Results: All Salvia species native to East Asia form a clade, and eight major subclades (A-G) were recognized. Subclade A, comprising two limestone endemics (S. sonchifolia and S. petrophila), is sister to the remainder of EA Salvia. Six distinct stamen types were observed within the EA clade. Stamen type A, with two fully fertile posterior thecae, only occurs in S. sonchifolia and may represent the ancestral stamen type within EA Salvia. Divergence time estimates showed that the crown of EA Salvia began to diversify approx. 17.4 million years ago.
Conclusions: This study supports the adoption of a broadly defined Salvia and treats EA Salvia as a subgenus, Glutinaria, recognizing eight sections within this subgenus. Stamen type A is ostensibly plesiomorphic within EA Salvia, and the other five types may have been derived from it. Staminal morphology has evolved in parallel within the EA Salvia, and staminal structure alone is inadequate to delimit infrageneric categories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153483 | PMC |
http://dx.doi.org/10.1093/aob/mcy104 | DOI Listing |
Viruses
December 2024
Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.
Porcine bocavirus (PBoV), classified within the genus Bocaparvovirus, has been reported worldwide. PBoV has been divided into group 1, group 2, and group 3. PBoV group 3 (G3) viruses are the most prevalent in China.
View Article and Find Full Text PDFViruses
December 2024
Federal Centre for Animal Health, 600901 Vladimir, Russia.
The lack of data on the whole-genome analysis of genotype II African swine fever virus (ASFV) isolates significantly hinders our understanding of its molecular evolution, and as a result, the range of single nucleotide polymorphisms (SNPs) necessary to describe a more accurate and complete scheme of its circulation. In this regard, this study aimed to identify unique SNPs, conduct phylogenetic analysis, and determine the level of homology of isolates obtained in the period from 2019 to 2022 in the central and eastern regions of Russia. Twenty-one whole-genome sequences of genotype II ASFV isolates were assembled, analyzed, and submitted to GenBank.
View Article and Find Full Text PDFViruses
December 2024
Department of Internal Medicine, College of Medicine, Chosun University, Gwangju 61453, Republic of Korea.
Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness caused by the SFTS virus (SFTSV). We conducted this study to propose a scientific evidence-based treatment that can improve prognosis through changes in viral load and inflammatory cytokines according to the specific treatment of SFTS patients. This prospective and observational study was conducted at 14 tertiary referral hospitals, which are located in SFTS endemic areas in Korea, from 1 May 2018 to 31 October 2020.
View Article and Find Full Text PDFViruses
November 2024
Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Tobacco curly shoot virus (TbCSV), a begomovirus, causes significant economic losses in tobacco and tomato crops across East, Southeast, and South Asia. Despite its agricultural importance, the evolutionary dynamics and emergence process of TbCSV remain poorly understood. This study analyzed the phylodynamics of TbCSV by examining its nucleotide sequences of the coat protein (CP) gene collected between 2000 and 2022.
View Article and Find Full Text PDFViruses
November 2024
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
Porcine rotavirus A (RVA) is one of the major etiological agents of diarrhea in piglets and constitutes a significant threat to the swine industry. A molecular epidemiological investigation was conducted on 2422 diarrhea samples from Chinese pig farms to enhance our understanding of the molecular epidemiology and evolutionary diversity of RVA. The findings revealed an average RVA positivity rate of 42% (943/2422), and the study included data from 26 provinces, primarily in the eastern, southern and southwestern regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!