The human epidermal growth factor receptor (HER) family consists of four transmembrane receptor tyrosine kinases: epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. They are part of a complex signalling network and stimulate intracellular pathways regulating cell growth and differentiation. So far, monoclonal antibodies (mAbs) and small molecule tyrosine kinase inhibitors targeting EGFR and HER2 have been developed and approved. Recently, focus has turned to HER3 as it may play an important role in resistance to EGFR- and HER2-targeting therapies. HER3-targeting agents have been undergoing clinical evaluation for the last 10 years and currently thirteen mAbs are in phase 1 or 2 clinical studies. Single agent activity has proven to be limited, however, the tolerability was favourable. Thus, combinations of HER3-binding mAbs with other HER-targeting therapies or chemotherapies have been pursued in various solid tumor entities. Data indicate that the HER3-binding ligand heregulin may serve as a response prediction marker for HER3-targeting therapy. Within this review the current status of clinical development of HER3-targeting compounds is described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ctrv.2018.06.011 | DOI Listing |
Int J Surg
January 2025
Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou; Chang Gung University, Taoyuan, Taiwan.
Background: Detecting kidney trauma on CT scans can be challenging and is sometimes overlooked. While deep learning (DL) has shown promise in medical imaging, its application to kidney injuries remains underexplored. This study aims to develop and validate a DL algorithm for detecting kidney trauma, using institutional trauma data and the Radiological Society of North America (RSNA) dataset for external validation.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
Background And Objectives: Recent advances in multimodal large language models (MLLMs) have shown promise in medical image interpretation, yet their utility in surgical contexts remains unexplored. This study evaluates six MLLMs' performance in interpreting diverse imaging modalities for laryngeal cancer surgery.
Methods: We analyzed 169 images (X-rays, CT scans, laryngoscopy, and pathology findings) from 50 patients using six state-of-the-art MLLMs.
Int J Surg
January 2025
Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
Background: The results of many large randomized clinical trials (RCTs) have transformed clinical practice in gastroesophageal reflux disease (GERD) and esophageal hiatal hernia (HH). However, research waste (i.e.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu, China.
Background: Type A aortic dissection (TAAD) remains a significant challenge in cardiac surgery, presenting high risks of adverse outcomes such as permanent neurological dysfunction and mortality despite advances in medical technology and surgical techniques. This study investigates the use of quantitative electroencephalography (QEEG) to monitor and predict neurological outcomes during the perioperative period in TAAD patients.
Methods: This prospective observational study was conducted at the hospital, involving patients undergoing TAAD surgery from February 2022 to January 2023.
Int J Surg
January 2025
Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!