Draft genome sequence of a bla/IncI1-harbouring Escherichia coli D:ST457 isolated from coastal benthic organisms.

J Glob Antimicrob Resist

Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. Electronic address:

Published: September 2018

Objectives: Marine bivalves can act as bioindicators of marine environment pollution by multidrug-resistant (MDR) enteric bacteria of medical interest. The aim of this study was to report the draft genome sequence of a plasmid-encoded AmpC (pAmpC) (CMY-2)-carrying Escherichia coli isolate recovered from a marine bivalve sample in the coastal shore of Southeast Brazil.

Methods: The whole genome was sequenced on an Illumina NextSeq platform and was assembled using Velvet v.1.2.10. Data analysis was carried out using tools available from the Center of Genomic Epidemiology and Geneious R10 software.

Results: The genome size was calculated at 5198055bp, comprising a total of 5316 protein-coding sequences. The strain was assigned to ST457 and presented the bla pAmpC gene. In addition, the strain was clustered into the pathogenic phylogenetic group D.

Conclusion: The release of this draft genome sequence can provide valuable information to better understand the dissemination of MDR enteric bacteria in marine environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgar.2018.06.010DOI Listing

Publication Analysis

Top Keywords

draft genome
12
genome sequence
12
escherichia coli
8
mdr enteric
8
enteric bacteria
8
sequence bla/inci1-harbouring
4
bla/inci1-harbouring escherichia
4
coli dst457
4
dst457 isolated
4
isolated coastal
4

Similar Publications

Background: Rare diseases (RDs) are a heterogeneous group of complex and low-prevalence conditions in which the time to establish a definitive diagnosis is often too long. In addition, for most RDs, few to no treatments are available and it is often difficult to find a specialized care team.

Objectives: The project "acERca las enfermedades raras" (in English: "bringing RDs closer") is an initiative primary designed to generate a consensus by a multidisciplinary group of experts to detect the strengths and weaknesses in the public healthcare system concerning the comprehensive care of persons living with a RD (PLWRD) in the region of Catalonia, Spain, where a Network of Clinical Expert Units (Xarxa d'Unitats de Expertesa Clínica or XUEC) was created and is being implemented since 2015.

View Article and Find Full Text PDF

Molecular Therapeutics in Development to Treat Hyperlipoproteinemia.

Mol Diagn Ther

January 2025

Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON, N6A 5B7, Canada.

Clinical endpoints caused by hyperlipoproteinemia include atherosclerotic cardiovascular disease and acute pancreatitis. Emerging lipid-lowering therapies targeting proprotein convertase subtilisin/kexin 9 (PCSK9), lipoprotein(a), apolipoprotein C-III, and angiopoietin-like protein 3 represent promising advances in the management of patients with hyperlipoproteinemia. These therapies offer novel approaches for lowering pathogenic lipid and lipoprotein species, particularly in patients with serious perturbations who are not adequately controlled with conventional treatments or who are unable to tolerate them.

View Article and Find Full Text PDF

Polycystic Ovary Syndrome (PCOS) is among the most prevalent endocrinological abnormalities of young females, posing a grave public health challenge to the society. The objective of the present literature review is to analyze the enormous amount of information available by way of numerous multi-omic studies, and to explore a meaningful relationship between various factors such as genetic, proteomic, environmental etc. to understand the multifactorial metabolic disorder in a proper manner.

View Article and Find Full Text PDF

Lispe represents a species-rich genus within the family Muscidae. The current subdivision of Lispe species into species groups is based mainly on adult morphology and ecology, with the only available phylogenetic study based on three molecular markers. Nonetheless, certain species groups remain unclear and the relationships and composition of these groups are still unresolved.

View Article and Find Full Text PDF

A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!