An improved sol-gel process involving the use of hollow silica microspheres as a supporting additive was applied for the co-immobilization of whole cells of Escherichia coli with Chromobacterium violaceum ω-transaminase activity and Lodderomyces elongisporus with ketoreductase activity. The co-immobilized cells with two different biocatalytic activities could perform a cascade of reactions to convert racemic 4-phenylbutan-2-amine or heptan-2-amine into a nearly equimolar mixture of the corresponding enantiomerically pure R amine and S alcohol even in continuous-flow mode. The novel co-immobilized whole-cell system proved to be an easy-to-store and durable biocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201800286 | DOI Listing |
Foods
November 2024
Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain.
Yeast biocapsules are a novel immobilization technology that could be used in fermentation processes. They are spherical structures consisting of yeast cells encapsulated and attached to the hyphae of a filamentous fungus. Yeast biocapsules offer a cutting-edge approach to cell immobilization, with significant potential for advancing fermented food production.
View Article and Find Full Text PDFBioresour Technol
January 2025
Henan Jinbaihe Biotechnology Co., LTD, Anyang 450000, Henan, China. Electronic address:
J Control Release
September 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China. Electronic address:
Cancer vaccines based on single-source (exogenous or endogenous) tumor-associated antigens (TAAs) are often challenged by the insufficient T cell response and the immunosuppressive tumor microenvironment (TME). Herein, a dual TAAs-boosted nanovaccine based on cancer cell (4T1) membrane-cloaked, CO-immobilized Prussian blue nanoparticles (4T1-PB-CO NPs) is developed and coupled with anti-interleukin (IL)-10 therapy to maximize the efficacy of antitumor immunotherapy. 4T1 cell membrane not only endows NPs with tumor targeting ability, but also serves as exogenous TAAs to trigger CD4 T cell response and M1-phenotype polarization of tumor-associated macrophages.
View Article and Find Full Text PDFBioact Mater
April 2024
Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China.
Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis.
View Article and Find Full Text PDFBiosensors (Basel)
May 2023
Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel.
L-Lactate is an indicator of food quality, so its monitoring is essential. Enzymes of L-Lactate metabolism are promising tools for this aim. We describe here some highly sensitive biosensors for L-Lactate determination which were developed using flavocytochrome b (Fc) as a bio-recognition element, and electroactive nanoparticles (NPs) for enzyme immobilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!