Kinetic, isotherm, and thermodynamic studies of the adsorption of dyes from aqueous solution by cellulose-based adsorbents.

Water Sci Technol

School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China E-mail: Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi, Xinjiang 832003, China; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

Published: June 2018

In this study, a highly efficient and eco-friendly porous cellulose-based aerogel was synthesized by grafting polyethyleneimine onto quaternized cellulose (PQC) to remove the anionic dye Congo Red (CR). The prepared aerogel had a good flexibility and formability. The adsorbents were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and elemental analysis. The results showed that there were many amino groups on CE/PQC aerogel and the structure was porous, which increased the adsorption capacity. The effects of initial concentration, adsorbent dose, contact time, temperature, and pH on the dye sorption were all investigated. The adsorption mechanism was also explored, including adsorption kinetics, adsorption isotherms and thermodynamic studies of adsorption. The results showed that the adsorption kinetics and isotherms fitted the pseudo-second-order kinetic model and Langmuir isotherm, respectively. The Langmuir isotherm revealed that the maximum theoretical adsorption capacity of the aerogels for CR was 518.403 mg g. The thermodynamic parameters including Gibbs free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS), showed the adsorption process was exothermic and spontaneous. These results imply that this new absorbent can be universally and effectively used for the removal of dyes from industrial textile wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2018.229DOI Listing

Publication Analysis

Top Keywords

adsorption
9
thermodynamic studies
8
studies adsorption
8
adsorption capacity
8
adsorption kinetics
8
langmuir isotherm
8
kinetic isotherm
4
isotherm thermodynamic
4
adsorption dyes
4
dyes aqueous
4

Similar Publications

Understanding the Curvature Effect on the Structure and Bonding of MoC Nanoparticles on Carbon Supports.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The interaction between molybdenum carbide (MoC) nanoparticles and both flat and curved graphene surfaces, serving as models for carbon nanotubes, was investigated by means of density functional theory. A variety of MoC nanoparticles with different sizes and stoichiometries have been used to explore different adsorption sites and modes across models with different curvature degrees. On flat graphene, off-stoichiometric MoC featuring more low-coordinated Mo atoms exhibits stronger interaction and increased electron transfers from the carbide to the carbon substrate.

View Article and Find Full Text PDF

Enhancing the CO Oxidation Performance of Copper by Alloying with Immiscible Tantalum.

ACS Appl Mater Interfaces

January 2025

School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Copper-tantalum (Cu-Ta) immiscible alloy nanoparticles (NPs) have been the subject of extensive research in the field of structural materials, due to their exceptional nanostructural stability and high-temperature creep properties. However, Cu is also a highly active oxidation catalyst due to its abundant valence changes. In this study, we have for the first time obtained homogeneous CuTa ( = 0.

View Article and Find Full Text PDF

The impact of deicer and anti-icer use on plant communities in stormwater detention basins: Characterizing salt stress and phytoremediation potential.

Sci Total Environ

January 2025

Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA.

We present the results of a 1-year study that quantified salt levels in stormwater, soils, and plant tissues from 14 stormwater detention basins across Northern VA in an above-average snow year. We characterize (1) the level of salt stress plants experience, (2) the extent to which current plant communities feature salt tolerant species, and (3) the capacity of these species to phytoremediate soils and reduce the impacts of deicer and anti-icer use. Our results suggest that detention basin vegetation experience a range of salt stress levels that depend on drainage area type (roads: moderate to high > parking lots: low to moderate > pervious areas: none).

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

The transition to net zero emissions requires the capture of carbon dioxide from industrial point sources, and direct air capture (DAC) from the atmosphere for geological storage. Dissolved CO has reactivity to rock core, and while the majority of previous studies have concentrated on reservoir rock or cap-rock reactivity, the underlying seal formation may also react with CO. Drill core from the underlying seal of a target CO storage site was reacted at in situ conditions with pure CO, and compared with an impure CO stream with SO, NO and O that could be expected from hard to abate industries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!