Versatile Control of Directed Supramolecular Assembly via Subtle Changes of the Rhodium(I) Pincer Building Blocks.

J Am Chem Soc

Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry , The University of Hong Kong, Pokfulam Road , Hong Kong , P.R. China.

Published: July 2018

Various rhodium(I) pincer complexes with different structural features have been prepared and found to display interesting self-assembly properties due to the extensive Rh(I)···Rh(I) interactions. The incorporation of electron-withdrawing -CF substituent has been found to improve the stability of the complexes and also facilitate the directed assembly of complex molecules, providing an opportunity for the systematic investigation of the various noncovalent interactions in their versatile self-assembly behaviors and insights into the structure-property relationship in governing the intermolecular interactions. An isodesmic growth mechanism is identified for the solvent-induced aggregation process. The complex molecules exhibit intense low-energy absorption bands corresponding to the absorptions of the dimers, trimers, and higher order oligomers upon aggregation, with energies related to the electronic properties of the tridentate N-donor ligand. Chiral auxiliaries have also been introduced into the rhodium(I) complexes to build up helical supramolecular assemblies and soft materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b04687DOI Listing

Publication Analysis

Top Keywords

rhodiumi pincer
8
complex molecules
8
versatile control
4
control directed
4
directed supramolecular
4
supramolecular assembly
4
assembly subtle
4
subtle changes
4
changes rhodiumi
4
pincer building
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!