Covalently cross-linked rubbers are renowned for their high elasticity that play an indispensable role in various applications including tires, seals, and medical implants. Development of self-healing and malleable rubbers is highly desirable as it allows for damage repair and reprocessability to extend the lifetime and alleviate environmental pollution. Herein, we propose a facile approach to prepare permanently cross-linked yet self-healing and recyclable diene-rubber by programming dynamic boronic ester linkages into the network. The network is synthesized through one-pot thermally initiated thiol-ene "click" reaction between a novel dithiol-containing boronic ester cross-linker and commonly used styrene-butadiene rubber without modifying the macromolecular structure. The resulted samples are covalently cross-linked and possess relatively high mechanical strength which can be readily tailored by varying boronic ester content. Owing to the transesterification of boronic ester bonds, the samples can alter network topologies, endowing the materials with self-healing ability and malleability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b09863 | DOI Listing |
Nat Commun
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
The strain-release-driven reactions of bicyclo[1.1.0]butanes (BCBs) have received significant attention from chemists.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China. Electronic address:
The management of diabetic wounds (DW) is a significant challenge within the medical field. Effectively regulating the levels of reactive oxygen species (ROS) at the wound site and orchestrating the inflammatory response are effective strategies for DW treatment. In this study, a novel hydrogel was developed by cross-linking polyboronic acid-modified carboxymethyl chitosan with herbal active ingredient rosmarinic acid (RA), an active herbal ingredient, through dynamic boronic esters formation.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Department of Chemical Engineering, University of Patras, Patras 26504, Greece.
We report on 3D-printable polymer networks based on the combination of modified alginate-based polymer blends; two alginate polymers were prepared, namely, a thermoresponsive polymer grafted with P(NIPAM--NtBAM)-NH copolymer chains and a second polymer modified with diol/pH-sensitive 3-aminophenylboronic acid. The gelation properties were determined by the hydrophobic association of the thermosensitive chains and the formation of boronate esters. At a mixing ratio of 70/30 wt % of the thermo/diol-responsive polymers, the semi-interpenetrating network exhibited an optimum storage modulus ranging from ca.
View Article and Find Full Text PDFBiomaterials
December 2024
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!