Non-small-cell lung cancer (NSCLC) is the most common cause of death from cancer worldwide. MicroRNAs (miRNAs) are a group of important regulators in NSCLC, including miR-198. However, the underlying molecular mechanisms of miR-198 involvement in intrinsic resistance to radiotherapy in NSCLC remain to be elucidated. In this study, to investigate the clinical significance of miR-198 in NSCLC in relation to the response to radiotherapy, we determined the expression patterns of miR-198 between responders and nonresponders after 2 months of radiotherapy and found that decreased expressions of miR-198 were associated with radiotherapy resistance. In addition, we altered the endogenous miR-198 using mimics or inhibitors to examine the effects of miR-198 on 4-Gy-irradiated A549 and SPCA-1 cells in vitro. Upregulating miR-198 was shown to inhibit cell proliferation, migration, and invasion and induce apoptosis. MiR-198 inhibition produced a reciprocal result. PHA665752, a selective small-molecule c-Met inhibitor, potently inhibited hepatocyte growth factor (HGF)-stimulated and constitutive c-Met phosphorylation and rescued 4-Gy-irradiated A549 and SPCA-1 cells from miR-198 inhibition. Most importantly, we established tumor xenografts of 4-Gy-irradiated A549 and SPCA-1 cells in nude mice and found that miR-198 could suppress tumor formation. Hence, our data delineates the molecular pathway by which miR-198 inhibits NSCLC cellular proliferation and induces apoptosis following radiotherapy, providing a novel target aimed at improving the radiotherapeutic response in NSCLC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.27204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!