Pharmaceutical Additive Manufacturing: a Novel Tool for Complex and Personalized Drug Delivery Systems.

AAPS PharmSciTech

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, 38677, USA.

Published: November 2018

Inter-individual variability is always an issue when treating patients of different races, genders, ages, pharmacogenetics, and pharmacokinetic characteristics. However, the development of novel dosage forms is limited by the huge investments required for production line modifications and dosages diversity. Additive manufacturing (AM) or 3D printing can be a novel alternative solution for the development of controlled release dosages because it can produce personalized or unique dosage forms and more complex drug-release profiles. The primary objective of this manuscript is to review the 3D printing processes that have been used in the pharmaceutical area, including their general aspects, materials, and the operation of each AM technique. Advantages and shortcomings of the technologies are discussed with respect to practice and practical applications. Thus, this review will provide an overview and discussion on advanced pharmaceutical AM technologies, which can be used to produce unique controlled drug delivery systems and personalized dosages for the future of personalized medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283689PMC
http://dx.doi.org/10.1208/s12249-018-1097-xDOI Listing

Publication Analysis

Top Keywords

additive manufacturing
8
drug delivery
8
delivery systems
8
dosage forms
8
pharmaceutical additive
4
manufacturing novel
4
novel tool
4
tool complex
4
personalized
4
complex personalized
4

Similar Publications

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

Additive Manufacturing (AM) was evaluated as a promising technology for constructing photocatalytic reactors due to its inherent ability to produce complex geometries with high precision and customization. In this work, a 3D structure was designed to achieve a good light distribution inside a cylindrical batch reactor and printed using the stereolithography (SLA) technique. A hybrid material composed of a commercial photoreactive resin (Formlabs Clear V4) and the benchmark photocatalyst TiO P25 Evonik (1 wt%) was prepared and characterized by scanning electron microscopy (SEM) and rheological and mechanical methods.

View Article and Find Full Text PDF

In the frame of developing a sustainable chemical industry, heterogeneously catalyzed CO2 hydrogenation to methanol has attracted considerable interest. However, the Cu-Zn based catalyst system employed in this process is very dynamic, especially in the presence of the products methanol and water. Deactivation needs to be prevented, but its origin and mechanism are hardly investigated at high conversion where product condensation is possible.

View Article and Find Full Text PDF

Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures.

Adv Mater

January 2025

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.

Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.

View Article and Find Full Text PDF

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

Sci Rep

January 2025

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!