Knowledge about the mechanisms underlying canine vision is far from being exhaustive, especially that concerning post-retinal elaboration. One aspect that has received little attention is motion perception, and in spite of the common belief that dogs are extremely apt at detecting moving stimuli, there is no scientific support for such an assumption. In fact, we recently showed that dogs have higher thresholds than humans for coherent motion detection (Kanizsar et al. in Sci Rep UK 7:11259, 2017). This term refers to the ability of the visual system to perceive several units moving in the same direction, as one coherently moving global unit. Coherent motion perception is commonly investigated using random dot displays, containing variable proportions of coherently moving dots. Here, we investigated the relative contribution of local and global integration mechanisms for coherent motion perception, and changes in detection thresholds as a result of repeated exposure to the experimental stimuli. Dogs who had been involved in the previous study were given a conditioned discrimination task, in which we systematically manipulated dot density and duration and, eventually, re-assessed our subjects' threshold after extensive exposure to the stimuli. Decreasing dot duration impacted on dogs' accuracy in detecting coherent motion only at very low duration values, revealing the efficacy of local integration mechanisms. Density impacted on dogs' accuracy in a linear fashion, indicating less efficient global integration. There was limited evidence of improvement in the re-assessment but, with an average threshold at re-assessment of 29%, dogs' ability to detect coherent motion remains much poorer than that of humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10071-018-1200-4 | DOI Listing |
J Comput Chem
January 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Cognitive Systems Lab, University of Bremen, 28359 Bremen, Germany.
Over recent years, automated Human Activity Recognition (HAR) has been an area of concern for many researchers due to its widespread application in surveillance systems, healthcare environments, and many more. This has led researchers to develop coherent and robust systems that efficiently perform HAR. Although there have been many efficient systems developed to date, still, there are many issues to be addressed.
View Article and Find Full Text PDFBiol Imaging
December 2024
Visual Information Laboratory, University of Bristol, Bristol, UK.
Optical coherence tomography (OCT) and confocal microscopy are pivotal in retinal imaging, offering distinct advantages and limitations. OCT offers rapid, noninvasive imaging but can suffer from clarity issues and motion artifacts, while confocal microscopy, providing high-resolution, cellular-detailed color images, is invasive and raises ethical concerns. To bridge the benefits of both modalities, we propose a novel framework based on unsupervised 3D CycleGAN for translating unpaired OCT to confocal microscopy images.
View Article and Find Full Text PDFiScience
January 2025
Montreal Centre for Brain, Music and Sound (BRAMS), Montreal, QC, Canada.
People synchronize their movements more easily to rhythms with tempi closer to their preferred motor rates than with faster or slower ones. More efficient coupling at one's preferred rate, compared to faster or slower rates, should be associated with lower cognitive demands and better attentional entrainment, as predicted by dynamical system theories of perception and action. We show that synchronizing one's finger taps to metronomes at tempi outside of their preferred rate evokes larger pupil sizes, a proxy for noradrenergic attention, relative to passively listening.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
The morphology and kinetics of the crystal growth front have been poorly explored at the particle level. Here, we experimentally observe the crystal growth front in liquid with single-particle kinetics using colloid systems and reveal a surface layer of polymorphic crystal near the solid-solid transition when the two crystals form a low-energy coherent interface. The thickness of the surface crystal can exceed 50 particles and grows logarithmically with the temperature as approaching the solid-solid transition which follows premelting theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!