AI Article Synopsis

  • A single rat gene can produce different mRNAs responsible for encoding either calcitonin or alpha-CGRP through alternative RNA processing.
  • A related gene in rats has been found to encode a protein precursor for beta-CGRP, differing by just one amino acid from alpha-CGRP, and this appears to be the sole transcript for the beta-CGRP gene.
  • Both alpha- and beta-CGRP mRNAs show similar distribution patterns in the brain, but their expression levels vary across different cranial nerve nuclei, suggesting beta-CGRP's role in sensory and motor information regulation.

Article Abstract

As a consequence of alternative RNA processing events, a single rat gene can generate messenger RNA's (mRNA's) encoding either calcitonin or a neuropeptide referred to as alpha-type calcitonin gene-related peptide (alpha-CGRP). An mRNA product of a related gene has been identified in rat brain and thyroid encoding the protein precursor of a peptide differing from alpha-CGRP by only a single amino acid. The RNA encoding this peptide, which is referred to as beta-CGRP, appears to be the only mature transcript of the beta-CGRP gene. Hybridization histochemistry reveals a similar distribution of alpha- and beta-CGRP mRNA's, but their relative levels of expression vary in different cranial nerve nuclei. Thus beta-CGRP is a new member of a family of related genes with potential functions in regulating the transduction of sensory and motor information.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.2994212DOI Listing

Publication Analysis

Top Keywords

rna encoding
8
calcitonin gene-related
8
gene-related peptide
8
expression brain
4
brain messenger
4
messenger rna
4
encoding
4
encoding novel
4
novel neuropeptide
4
neuropeptide homologous
4

Similar Publications

Transcription Regulation of Flagellins: A Structural Perspective.

Biochemistry

January 2025

Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India.

Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors.

View Article and Find Full Text PDF

Objective: To study the subcutaneous adipose tissue (SAT) transcriptome in people with HIV (PWH) switching efavirenz (EFV) or a protease inhibitor (PI) to raltegravir and to compare the transcriptome of PWH to those of people without HIV (PWoH).

Design: PWH (n = 36) on EFV (n = 22) or a PI (n = 14) based ART regimen were randomized to switch to RAL (n = 15) or to continue unchanged medication (n = 17). PWoH (n = 10), comparable in age and body mass index, were included for comparison.

View Article and Find Full Text PDF

Genetic diversity of murine norovirus associated with ethanol sensitivity.

Appl Microbiol Biotechnol

January 2025

Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.

RNA viruses have high genetic diversity, allowing rapid adaptation to environmental pressures, such as disinfection. This diversity increases the likelihood of mutations influencing the viral sensitivity to disinfectants. Ethanol is widely used to control viral transmission; however, insufficient disinfection facilitates the survival of less-sensitive viruses.

View Article and Find Full Text PDF

The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.

View Article and Find Full Text PDF

Infantile myofibromatosis (IM) comprises a wide clinical spectrum, ranging from solitary or multicentric lesions to generalized life-threatening forms. IM is mostly linked to germline or somatic heterozygous mutations in the PDGFRβ tyrosine kinase, encoded by the PDGFRB gene. Treatments for IM range from wait and see approach to systemic chemotherapy, according to the clinical context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!